Normalized defining polynomial
\( x^{6} - 3 x^{5} + 4 x^{4} - 3 x^{3} + 2 x^{2} - x + 4 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-430923=-\,3\cdot 379^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $8.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{9} a^{5} + \frac{2}{9} a^{4} - \frac{4}{9} a^{3} + \frac{4}{9} a^{2} + \frac{4}{9} a + \frac{1}{9}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{2}{9} a^{5} - \frac{5}{9} a^{4} + \frac{1}{9} a^{3} + \frac{8}{9} a^{2} - \frac{10}{9} a + \frac{11}{9} \), \( \frac{4}{9} a^{5} - \frac{10}{9} a^{4} + \frac{11}{9} a^{3} - \frac{2}{9} a^{2} - \frac{11}{9} a + \frac{13}{9} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6.4810373126 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 6T11):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.1.379.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 4.2.3411.1 $\times$ \(\Q(\sqrt{1137}) \) |
| Degree 6 sibling: | 6.2.163319817.1 |
| Degree 8 siblings: | 8.0.11634921.1, 8.4.1671251687361.1 |
| Degree 12 siblings: | Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12 |
| Degree 16 sibling: | Deg 16 |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 379 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.379.2t1.1c1 | $1$ | $ 379 $ | $x^{2} - x + 95$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.3_379.2t1.1c1 | $1$ | $ 3 \cdot 379 $ | $x^{2} - x - 284$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.3e2_379.6t3.2c1 | $2$ | $ 3^{2} \cdot 379 $ | $x^{6} - 2 x^{5} - x^{4} + 29 x^{3} - 26 x^{2} - 27 x - 102$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| * | 2.379.3t2.1c1 | $2$ | $ 379 $ | $x^{3} - x^{2} + x - 4$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 3.3e2_379.4t5.1c1 | $3$ | $ 3^{2} \cdot 379 $ | $x^{4} - x^{3} - 4 x^{2} - 2 x + 1$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.3_379e2.6t11.2c1 | $3$ | $ 3 \cdot 379^{2}$ | $x^{6} - 3 x^{5} + 4 x^{4} - 3 x^{3} + 2 x^{2} - x + 4$ | $S_4\times C_2$ (as 6T11) | $1$ | $1$ | |
| * | 3.3_379.6t11.2c1 | $3$ | $ 3 \cdot 379 $ | $x^{6} - 3 x^{5} + 4 x^{4} - 3 x^{3} + 2 x^{2} - x + 4$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ |
| 3.3e2_379e2.6t8.1c1 | $3$ | $ 3^{2} \cdot 379^{2}$ | $x^{4} - x^{3} - 4 x^{2} - 2 x + 1$ | $S_4$ (as 4T5) | $1$ | $-1$ |