Normalized defining polynomial
\( x^{6} - 12x^{4} - 24x^{3} + 36x^{2} + 144x + 184 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-419904000\) \(\medspace = -\,2^{9}\cdot 3^{8}\cdot 5^{3}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(27.36\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{16/9}5^{1/2}\approx 44.59083034511297$ | ||
Ramified primes: | \(2\), \(3\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-10}) \) | ||
$\card{ \Aut(K/\Q) }$: | $3$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{4}a^{4}$, $\frac{1}{28}a^{5}+\frac{3}{28}a^{4}+\frac{1}{7}a^{3}+\frac{1}{14}a^{2}+\frac{1}{7}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1}{28}a^{5}+\frac{3}{28}a^{4}+\frac{1}{7}a^{3}+\frac{1}{14}a^{2}-\frac{6}{7}$, $\frac{2}{7}a^{5}-\frac{9}{14}a^{4}-\frac{33}{14}a^{3}+\frac{1}{14}a^{2}+10a+\frac{120}{7}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 43.7064821236 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 43.7064821236 \cdot 2}{2\cdot\sqrt{419904000}}\cr\approx \mathstrut & 0.529066729072 \end{aligned}\]
Galois group
$C_3\times S_3$ (as 6T5):
A solvable group of order 18 |
The 9 conjugacy class representatives for $S_3\times C_3$ |
Character table for $S_3\times C_3$ |
Intermediate fields
\(\Q(\sqrt{-10}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Galois closure: | 18.0.485758124386377007104000000000.1 |
Twin sextic algebra: | 3.1.3240.1 $\times$ \(\Q(\zeta_{9})^+\) |
Degree 9 sibling: | 9.3.2754990144000.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{3}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{3}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.1.0.1}{1} }^{6}$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ | ${\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.9.7 | $x^{6} + 32 x^{4} + 2 x^{3} + 301 x^{2} - 58 x + 811$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
\(3\) | 3.6.8.9 | $x^{6} + 36 x^{4} + 6 x^{3} + 9$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ |
\(5\) | 5.6.3.2 | $x^{6} + 75 x^{2} - 375$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.40.2t1.b.a | $1$ | $ 2^{3} \cdot 5 $ | \(\Q(\sqrt{-10}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.360.6t1.d.a | $1$ | $ 2^{3} \cdot 3^{2} \cdot 5 $ | 6.0.419904000.3 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.360.6t1.d.b | $1$ | $ 2^{3} \cdot 3^{2} \cdot 5 $ | 6.0.419904000.3 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
2.3240.3t2.a.a | $2$ | $ 2^{3} \cdot 3^{4} \cdot 5 $ | 3.1.3240.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
* | 2.3240.6t5.e.a | $2$ | $ 2^{3} \cdot 3^{4} \cdot 5 $ | 6.0.419904000.9 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.3240.6t5.e.b | $2$ | $ 2^{3} \cdot 3^{4} \cdot 5 $ | 6.0.419904000.9 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |