Normalized defining polynomial
\( x^{6} - 2 x^{3} + 9 x^{2} - 12 x + 5 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-419904=-\,2^{6}\cdot 3^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $8.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{19} a^{5} + \frac{7}{19} a^{4} - \frac{8}{19} a^{3} - \frac{1}{19} a^{2} + \frac{2}{19} a + \frac{2}{19}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{9}{19} a^{5} - \frac{6}{19} a^{4} - \frac{4}{19} a^{3} + \frac{9}{19} a^{2} - \frac{75}{19} a + \frac{58}{19} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{9}{19} a^{5} + \frac{6}{19} a^{4} + \frac{4}{19} a^{3} - \frac{9}{19} a^{2} + \frac{56}{19} a - \frac{39}{19} \), \( \frac{3}{19} a^{5} + \frac{2}{19} a^{4} - \frac{5}{19} a^{3} - \frac{3}{19} a^{2} + \frac{25}{19} a - \frac{13}{19} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5.28645643215 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 6T5):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | 18.0.485758124386377007104.1 |
| Twin sextic algebra: | \(\Q(\zeta_{9})^+\) $\times$ 3.1.324.1 |
| Degree 9 sibling: | 9.3.2754990144.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| $3$ | 3.6.8.9 | $x^{6} + 6 x^{5} + 9$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.2e2.2t1.1c1 | $1$ | $ 2^{2}$ | $x^{2} + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.3e2.3t1.1c1 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.2e2_3e2.6t1.2c1 | $1$ | $ 2^{2} \cdot 3^{2}$ | $x^{6} + 6 x^{4} + 9 x^{2} + 1$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.2e2_3e2.6t1.2c2 | $1$ | $ 2^{2} \cdot 3^{2}$ | $x^{6} + 6 x^{4} + 9 x^{2} + 1$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.3e2.3t1.1c2 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 2.2e2_3e4.3t2.1c1 | $2$ | $ 2^{2} \cdot 3^{4}$ | $x^{3} - 3 x - 4$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| * | 2.2e2_3e4.6t5.2c1 | $2$ | $ 2^{2} \cdot 3^{4}$ | $x^{6} - 2 x^{3} + 9 x^{2} - 12 x + 5$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
| * | 2.2e2_3e4.6t5.2c2 | $2$ | $ 2^{2} \cdot 3^{4}$ | $x^{6} - 2 x^{3} + 9 x^{2} - 12 x + 5$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |