Normalized defining polynomial
\( x^{6} - 2x^{5} + 3x^{4} - 2x^{3} + 2x^{2} + 1 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-41472\)
\(\medspace = -\,2^{9}\cdot 3^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(5.88\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(3\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-2}) \) | ||
$\card{ \Aut(K/\Q) }$: | $3$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{2}-a+1$, $a^{4}-2a^{3}+2a^{2}-a+1$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 0.632381281465 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) = \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}} \approx\frac{2^{0}\cdot(2\pi)^{3}\cdot 0.632381281465 \cdot 1}{2\cdot\sqrt{41472}}\approx 0.3851333486728$
Galois group
$C_3\times S_3$ (as 6T5):
A solvable group of order 18 |
The 9 conjugacy class representatives for $S_3\times C_3$ |
Character table for $S_3\times C_3$ |
Intermediate fields
\(\Q(\sqrt{-2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Galois closure: | 18.0.37907050706572935168.1 |
Twin sextic algebra: | \(\Q(\zeta_{9})^+\) $\times$ 3.1.648.1 |
Degree 9 sibling: | 9.3.272097792.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }$ | ${\href{/padicField/7.6.0.1}{6} }$ | ${\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{3}$ | ${\href{/padicField/13.6.0.1}{6} }$ | ${\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.2.0.1}{2} }^{3}$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.6.9.5 | $x^{6} + 12 x^{5} + 68 x^{4} + 226 x^{3} + 457 x^{2} + 514 x + 243$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
\(3\)
| 3.3.4.1 | $x^{3} + 6 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
3.3.0.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.8.2t1.b.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{-2}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
1.72.6t1.a.a | $1$ | $ 2^{3} \cdot 3^{2}$ | 6.0.3359232.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.72.6t1.a.b | $1$ | $ 2^{3} \cdot 3^{2}$ | 6.0.3359232.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
2.648.3t2.b.a | $2$ | $ 2^{3} \cdot 3^{4}$ | 3.1.648.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
* | 2.72.6t5.b.a | $2$ | $ 2^{3} \cdot 3^{2}$ | 6.0.41472.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.72.6t5.b.b | $2$ | $ 2^{3} \cdot 3^{2}$ | 6.0.41472.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |