Normalized defining polynomial
\( x^{6} - x^{5} + 871 x^{4} - 1747 x^{3} + 200552 x^{2} - 199676 x + 11381248 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-41308916090447=-\,31^{5}\cdot 113^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $185.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3503=31\cdot 113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3503}(1,·)$, $\chi_{3503}(564,·)$, $\chi_{3503}(677,·)$, $\chi_{3503}(2826,·)$, $\chi_{3503}(2939,·)$, $\chi_{3503}(3502,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{24} a^{4} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2} + \frac{1}{12} a - \frac{1}{3}$, $\frac{1}{26802190512} a^{5} + \frac{337852297}{26802190512} a^{4} + \frac{483902261}{2978021168} a^{3} - \frac{613995337}{26802190512} a^{2} - \frac{1276289605}{4467031752} a + \frac{624870367}{1675136907}$
Class group and class number
$C_{17212}$, which has order $17212$ (assuming GRH)
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{7115}{6700547628} a^{5} - \frac{1184195}{3350273814} a^{4} - \frac{135839}{744505292} a^{3} - \frac{747453103}{3350273814} a^{2} + \frac{58316636}{558378969} a - \frac{27920087311}{1675136907} \), \( \frac{26923}{13401095256} a^{5} + \frac{3987121}{13401095256} a^{4} + \frac{2468195}{1489010584} a^{3} + \frac{3004814039}{13401095256} a^{2} - \frac{20041093}{2233515876} a + \frac{58599659225}{1675136907} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48.7831276503 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-3503}) \), 3.3.961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-3503}) \) $\times$ 3.3.961.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| $113$ | 113.6.3.1 | $x^{6} - 226 x^{4} + 12769 x^{2} - 36072425$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |