Normalized defining polynomial
\( x^{6} - x^{5} + 37 x^{4} + 28 x^{3} + 1300 x^{2} - 144 x + 16 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3811270347=-\,3^{3}\cdot 109^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(327=3\cdot 109\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{327}(1,·)$, $\chi_{327}(263,·)$, $\chi_{327}(281,·)$, $\chi_{327}(154,·)$, $\chi_{327}(172,·)$, $\chi_{327}(110,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{4} + \frac{1}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{191824} a^{5} - \frac{37}{191824} a^{4} - \frac{46587}{191824} a^{3} + \frac{23653}{47956} a^{2} - \frac{11971}{23978} a + \frac{11323}{23978}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{333}{47956} a^{5} + \frac{83}{11989} a^{4} - \frac{3071}{11989} a^{3} - \frac{10693}{47956} a^{2} - \frac{107900}{11989} a + \frac{11952}{11989} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1683}{23978} a^{5} + \frac{9663}{23978} a^{4} + \frac{31042}{11989} a^{3} + \frac{54043}{23978} a^{2} + \frac{254341}{23978} a + \frac{374}{11989} \), \( \frac{111147}{11989} a^{5} - \frac{444441}{47956} a^{4} + \frac{16444317}{47956} a^{3} + \frac{12457883}{47956} a^{2} + \frac{144443325}{11989} a - \frac{15999876}{11989} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 212.765371498 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.11881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 3.3.11881.1 $\times$ \(\Q(\sqrt{-3}) \) $\times$ \(\Q\) |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $109$ | 109.3.2.1 | $x^{3} - 109$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 109.3.2.1 | $x^{3} - 109$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.109.3t1.1c1 | $1$ | $ 109 $ | $x^{3} - x^{2} - 36 x + 4$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3_109.6t1.1c1 | $1$ | $ 3 \cdot 109 $ | $x^{6} - x^{5} + 37 x^{4} + 28 x^{3} + 1300 x^{2} - 144 x + 16$ | $C_6$ (as 6T1) | $0$ | $-1$ |
| * | 1.109.3t1.1c2 | $1$ | $ 109 $ | $x^{3} - x^{2} - 36 x + 4$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3_109.6t1.1c2 | $1$ | $ 3 \cdot 109 $ | $x^{6} - x^{5} + 37 x^{4} + 28 x^{3} + 1300 x^{2} - 144 x + 16$ | $C_6$ (as 6T1) | $0$ | $-1$ |