Normalized defining polynomial
\( x^{6} - x^{5} + 491 x^{4} - 491 x^{3} + 69091 x^{2} - 69091 x + 2470091 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-372914405087=-\,7^{5}\cdot 281^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 281$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1967=7\cdot 281\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1967}(1,·)$, $\chi_{1967}(1123,·)$, $\chi_{1967}(1685,·)$, $\chi_{1967}(282,·)$, $\chi_{1967}(844,·)$, $\chi_{1967}(1966,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{372751} a^{4} - \frac{5252}{372751} a^{3} + \frac{280}{372751} a^{2} + \frac{15333}{372751} a + \frac{9800}{372751}$, $\frac{1}{372751} a^{5} + \frac{350}{372751} a^{3} - \frac{5111}{372751} a^{2} + \frac{24500}{372751} a + \frac{29962}{372751}$
Class group and class number
$C_{2}\times C_{6}\times C_{108}$, which has order $1296$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{71}{372751} a^{4} - \frac{141}{372751} a^{3} + \frac{19880}{372751} a^{2} - \frac{29610}{372751} a + \frac{1068551}{372751} \), \( \frac{1}{372751} a^{5} + \frac{350}{372751} a^{3} - \frac{5111}{372751} a^{2} + \frac{24500}{372751} a - \frac{715540}{372751} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2.10181872849 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-1967}) \), \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-1967}) \) $\times$ \(\Q(\zeta_{7})^+\) |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 281 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.7_281.2t1.1c1 | $1$ | $ 7 \cdot 281 $ | $x^{2} - x + 492$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.7.3t1.1c1 | $1$ | $ 7 $ | $x^{3} - x^{2} - 2 x + 1$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.7_281.6t1.2c1 | $1$ | $ 7 \cdot 281 $ | $x^{6} - x^{5} + 491 x^{4} - 491 x^{3} + 69091 x^{2} - 69091 x + 2470091$ | $C_6$ (as 6T1) | $0$ | $-1$ |
| * | 1.7.3t1.1c2 | $1$ | $ 7 $ | $x^{3} - x^{2} - 2 x + 1$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.7_281.6t1.2c2 | $1$ | $ 7 \cdot 281 $ | $x^{6} - x^{5} + 491 x^{4} - 491 x^{3} + 69091 x^{2} - 69091 x + 2470091$ | $C_6$ (as 6T1) | $0$ | $-1$ |