Normalized defining polynomial
\( x^{6} - 2 x^{5} + 182 x^{4} - 4988 x^{3} + 96513 x^{2} - 268002 x + 5860328 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-37280792061188047=-\,173^{3}\cdot 1931^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $577.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $173, 1931$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{4} + \frac{1}{8} a^{3} + \frac{3}{16} a^{2} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{5165015232} a^{5} - \frac{29304965}{1721671744} a^{4} + \frac{1012950305}{5165015232} a^{3} - \frac{522239353}{5165015232} a^{2} - \frac{34884373}{198654432} a + \frac{140438185}{645626904}$
Class group and class number
$C_{2}\times C_{50}\times C_{1350}$, which has order $135000$ (assuming GRH)
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{7151}{645626904} a^{5} - \frac{72125}{215208968} a^{4} - \frac{3418373}{645626904} a^{3} - \frac{66193841}{645626904} a^{2} - \frac{10264241}{24831804} a - \frac{402705052}{80703363} \), \( \frac{1531}{24831804} a^{5} - \frac{9759}{16554536} a^{4} + \frac{13448}{6207951} a^{3} - \frac{21840551}{49663608} a^{2} + \frac{154742719}{24831804} a - \frac{127202320}{6207951} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 188.02747835552225 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6 |
| The 3 conjugacy class representatives for $S_3$ |
| Character table for $S_3$ |
Intermediate fields
| \(\Q(\sqrt{-334063}) \), 3.1.334063.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | data not computed |
| Degree 3 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $173$ | 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 1931 | Data not computed | ||||||