Normalized defining polynomial
\( x^{6} + 8 x^{4} - 16 x^{3} + 57 x^{2} - 146 x + 105 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-357286464=-\,2^{6}\cdot 3^{4}\cdot 41^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{1047} a^{5} - \frac{236}{1047} a^{4} + \frac{71}{349} a^{3} - \frac{28}{1047} a^{2} + \frac{383}{1047} a - \frac{164}{349}$
Class group and class number
$C_{8}$, which has order $8$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{70}{1047} a^{5} + \frac{232}{1047} a^{4} + \frac{84}{349} a^{3} + \frac{1181}{1047} a^{2} + \frac{1682}{1047} a - \frac{1359}{349} \), \( \frac{246}{349} a^{5} + \frac{227}{349} a^{4} + \frac{2142}{349} a^{3} - \frac{2002}{349} a^{2} + \frac{11854}{349} a - \frac{25057}{349} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51.2858663948 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 6T5):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-41}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | 18.0.24238444506812135997594990280704.1 |
| Twin sextic algebra: | \(\Q(\zeta_{9})^+\) $\times$ 3.1.13284.1 |
| Degree 9 sibling: | 9.3.2344156490304.2 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $41$ | 41.6.3.1 | $x^{6} - 82 x^{4} + 1681 x^{2} - 11647649$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.2e2_41.2t1.1c1 | $1$ | $ 2^{2} \cdot 41 $ | $x^{2} + 41$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.2e2_3e2_41.6t1.1c1 | $1$ | $ 2^{2} \cdot 3^{2} \cdot 41 $ | $x^{6} + 117 x^{4} - 2 x^{3} + 5052 x^{2} + 252 x + 79377$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.2e2_3e2_41.6t1.1c2 | $1$ | $ 2^{2} \cdot 3^{2} \cdot 41 $ | $x^{6} + 117 x^{4} - 2 x^{3} + 5052 x^{2} + 252 x + 79377$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.3e2.3t1.1c1 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.3e2.3t1.1c2 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 2.2e2_3e4_41.3t2.1c1 | $2$ | $ 2^{2} \cdot 3^{4} \cdot 41 $ | $x^{3} + 6 x - 44$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| * | 2.2e2_3e2_41.6t5.1c1 | $2$ | $ 2^{2} \cdot 3^{2} \cdot 41 $ | $x^{6} + 8 x^{4} - 16 x^{3} + 57 x^{2} - 146 x + 105$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
| * | 2.2e2_3e2_41.6t5.1c2 | $2$ | $ 2^{2} \cdot 3^{2} \cdot 41 $ | $x^{6} + 8 x^{4} - 16 x^{3} + 57 x^{2} - 146 x + 105$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |