Properties

Label 6.0.349992553699.1
Degree $6$
Signature $[0, 3]$
Discriminant $-\,19^{4}\cdot 139^{3}$
Root discriminant $83.95$
Ramified primes $19, 139$
Class number $27$
Class group $[3, 9]$
Galois group $S_3\times C_3$ (as 6T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5365, -3551, 680, 318, 31, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 + 31*x^4 + 318*x^3 + 680*x^2 - 3551*x + 5365)
 
gp: K = bnfinit(x^6 - x^5 + 31*x^4 + 318*x^3 + 680*x^2 - 3551*x + 5365, 1)
 

Normalized defining polynomial

\( x^{6} - x^{5} + 31 x^{4} + 318 x^{3} + 680 x^{2} - 3551 x + 5365 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-349992553699=-\,19^{4}\cdot 139^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $83.95$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 139$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{21156083} a^{5} + \frac{6362572}{21156083} a^{4} - \frac{5251377}{21156083} a^{3} - \frac{2196977}{21156083} a^{2} - \frac{10132717}{21156083} a + \frac{7174322}{21156083}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{9}$, which has order $27$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $2$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{645}{21156083} a^{5} - \frac{421162}{21156083} a^{4} - \frac{2164885}{21156083} a^{3} + \frac{407396}{21156083} a^{2} + \frac{22783265}{21156083} a - \frac{48056653}{21156083} \),  \( \frac{766535}{21156083} a^{5} + \frac{1157947}{21156083} a^{4} + \frac{24799798}{21156083} a^{3} + \frac{302939433}{21156083} a^{2} + \frac{1219891175}{21156083} a - \frac{408734576}{21156083} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 88.625416111 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times S_3$ (as 6T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3\times C_3$
Character table for $S_3\times C_3$

Intermediate fields

\(\Q(\sqrt{-139}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Galois closure: data not computed
Twin sextic algebra: 3.1.139.1 $\times$ 3.3.361.1
Degree 9 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }$ ${\href{/LocalNumberField/3.6.0.1}{6} }$ ${\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }$ R ${\href{/LocalNumberField/23.6.0.1}{6} }$ ${\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$19$19.6.4.3$x^{6} + 95 x^{3} + 2888$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$139$139.6.3.2$x^{6} - 19321 x^{2} + 13428095$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.139.2t1.1c1$1$ $ 139 $ $x^{2} - x + 35$ $C_2$ (as 2T1) $1$ $-1$
1.19_139.6t1.2c1$1$ $ 19 \cdot 139 $ $x^{6} - x^{5} + 92 x^{4} - 71 x^{3} + 3683 x^{2} - 134 x + 58597$ $C_6$ (as 6T1) $0$ $-1$
1.19_139.6t1.2c2$1$ $ 19 \cdot 139 $ $x^{6} - x^{5} + 92 x^{4} - 71 x^{3} + 3683 x^{2} - 134 x + 58597$ $C_6$ (as 6T1) $0$ $-1$
1.19.3t1.1c1$1$ $ 19 $ $x^{3} - x^{2} - 6 x + 7$ $C_3$ (as 3T1) $0$ $1$
1.19.3t1.1c2$1$ $ 19 $ $x^{3} - x^{2} - 6 x + 7$ $C_3$ (as 3T1) $0$ $1$
2.139.3t2.1c1$2$ $ 139 $ $x^{3} - x^{2} + x + 2$ $S_3$ (as 3T2) $1$ $0$
* 2.19e2_139.6t5.1c1$2$ $ 19^{2} \cdot 139 $ $x^{6} - x^{5} + 31 x^{4} + 318 x^{3} + 680 x^{2} - 3551 x + 5365$ $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.19e2_139.6t5.1c2$2$ $ 19^{2} \cdot 139 $ $x^{6} - x^{5} + 31 x^{4} + 318 x^{3} + 680 x^{2} - 3551 x + 5365$ $S_3\times C_3$ (as 6T5) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.