Normalized defining polynomial
\( x^{6} - 6x^{3} + 16x^{2} - 24x + 18 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-3385600\)
\(\medspace = -\,2^{8}\cdot 5^{2}\cdot 23^{2}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.25\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(5\), \(23\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{165}a^{5}+\frac{14}{55}a^{4}-\frac{17}{55}a^{3}-\frac{1}{55}a^{2}+\frac{1}{3}a-\frac{8}{55}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( \frac{16}{165} a^{5} + \frac{4}{55} a^{4} + \frac{3}{55} a^{3} - \frac{16}{55} a^{2} + \frac{4}{3} a - \frac{73}{55} \)
(order $4$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{23}{165}a^{5}-\frac{8}{55}a^{4}-\frac{6}{55}a^{3}-\frac{78}{55}a^{2}+\frac{11}{3}a-\frac{129}{55}$, $\frac{53}{165}a^{5}+\frac{27}{55}a^{4}+\frac{34}{55}a^{3}-\frac{108}{55}a^{2}+\frac{11}{3}a-\frac{259}{55}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 33.8354673478 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) = \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}} \approx\frac{2^{0}\cdot(2\pi)^{3}\cdot 33.8354673478 \cdot 1}{4\cdot\sqrt{3385600}}\approx 1.14033898064$
Galois group
A solvable group of order 12 |
The 6 conjugacy class representatives for $D_{6}$ |
Character table for $D_{6}$ |
Intermediate fields
\(\Q(\sqrt{-1}) \), 3.1.460.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Galois closure: | deg 12 |
Twin sextic algebra: | 3.1.460.1 $\times$ \(\Q(\sqrt{115}) \) $\times$ \(\Q\) |
Degree 6 sibling: | 6.2.389344000.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/7.6.0.1}{6} }$ | ${\href{/padicField/11.2.0.1}{2} }^{3}$ | ${\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(23\)
| 23.2.0.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
23.4.2.1 | $x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.115.2t1.a.a | $1$ | $ 5 \cdot 23 $ | \(\Q(\sqrt{-115}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.460.2t1.a.a | $1$ | $ 2^{2} \cdot 5 \cdot 23 $ | \(\Q(\sqrt{115}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
* | 1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 2.460.3t2.a.a | $2$ | $ 2^{2} \cdot 5 \cdot 23 $ | 3.1.460.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.1840.6t3.a.a | $2$ | $ 2^{4} \cdot 5 \cdot 23 $ | 6.0.3385600.1 | $D_{6}$ (as 6T3) | $1$ | $0$ |