Normalized defining polynomial
\( x^{6} - 116x^{4} + 3364x^{2} + 32251 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-33545135909251\)
\(\medspace = -\,32251^{3}\)
|
| |
| Root discriminant: | \(179.59\) |
| |
| Galois root discriminant: | $32251^{1/2}\approx 179.5856341693288$ | ||
| Ramified primes: |
\(32251\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-32251}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $S_3$ |
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-32251}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2570}a^{4}+\frac{76}{257}a^{2}-\frac{1}{2}a+\frac{462}{1285}$, $\frac{1}{2570}a^{5}-\frac{105}{514}a^{3}-\frac{1}{2}a^{2}+\frac{462}{1285}a-\frac{1}{2}$
| Monogenic: | No | |
| Index: | $20$ | |
| Inessential primes: | $2$, $5$ |
Class group and class number
| Ideal class group: | $C_{13}\times C_{143}$, which has order $1859$ |
| |
| Narrow class group: | $C_{13}\times C_{143}$, which has order $1859$ |
|
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3}{2570}a^{5}+\frac{8}{1285}a^{4}-\frac{29}{257}a^{3}-\frac{395}{514}a^{2}-\frac{1184}{1285}a-\frac{8028}{1285}$, $\frac{3}{1285}a^{4}-\frac{58}{257}a^{2}-\frac{2368}{1285}$
|
| |
| Regulator: | \( 52.5669032501 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 52.5669032501 \cdot 1859}{2\cdot\sqrt{33545135909251}}\cr\approx \mathstrut & 2.09260189612 \end{aligned}\]
Galois group
| A solvable group of order 6 |
| The 3 conjugacy class representatives for $S_3$ |
| Character table for $S_3$ |
Intermediate fields
| \(\Q(\sqrt{-32251}) \), 3.1.32251.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 3.1.32251.1 $\times$ \(\Q\) $\times$ \(\Q\) $\times$ \(\Q\) |
| Degree 3 sibling: | 3.1.32251.1 |
| Minimal sibling: | 3.1.32251.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{3}$ | ${\href{/padicField/3.2.0.1}{2} }^{3}$ | ${\href{/padicField/5.1.0.1}{1} }^{6}$ | ${\href{/padicField/7.2.0.1}{2} }^{3}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{3}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{3}$ | ${\href{/padicField/41.1.0.1}{1} }^{6}$ | ${\href{/padicField/43.2.0.1}{2} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.1.0.1}{1} }^{6}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(32251\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |