Properties

Label 6.0.33083784209567.2
Degree $6$
Signature $[0, 3]$
Discriminant $-\,7^{5}\cdot 13^{4}\cdot 41^{3}$
Root discriminant $179.17$
Ramified primes $7, 13, 41$
Class number $19026$
Class group $[3, 6342]$
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![746656, 21020, 16444, -211, 155, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 + 155*x^4 - 211*x^3 + 16444*x^2 + 21020*x + 746656)
 
gp: K = bnfinit(x^6 - x^5 + 155*x^4 - 211*x^3 + 16444*x^2 + 21020*x + 746656, 1)
 

Normalized defining polynomial

\( x^{6} - x^{5} + 155 x^{4} - 211 x^{3} + 16444 x^{2} + 21020 x + 746656 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-33083784209567=-\,7^{5}\cdot 13^{4}\cdot 41^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $179.17$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 13, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3731=7\cdot 13\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{3731}(1,·)$, $\chi_{3731}(1108,·)$, $\chi_{3731}(165,·)$, $\chi_{3731}(614,·)$, $\chi_{3731}(1270,·)$, $\chi_{3731}(573,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{14} a^{3} + \frac{3}{14} a^{2} - \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{56} a^{4} - \frac{1}{28} a^{3} - \frac{5}{56} a^{2} + \frac{1}{4} a + \frac{2}{7}$, $\frac{1}{732872} a^{5} - \frac{193}{366436} a^{4} + \frac{17895}{732872} a^{3} + \frac{10075}{366436} a^{2} + \frac{8093}{183218} a - \frac{24096}{91609}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{6342}$, which has order $19026$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $2$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{37}{366436} a^{5} - \frac{1195}{366436} a^{4} + \frac{7765}{366436} a^{3} - \frac{15015}{52348} a^{2} + \frac{297881}{183218} a - \frac{2712281}{91609} \),  \( \frac{17}{183218} a^{5} - \frac{37}{366436} a^{4} + \frac{1607}{91609} a^{3} - \frac{8511}{366436} a^{2} + \frac{20661}{26174} a - \frac{630829}{91609} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 62.4891977899 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_6$ (as 6T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 6
The 6 conjugacy class representatives for $C_6$
Character table for $C_6$

Intermediate fields

\(\Q(\sqrt{-287}) \), 3.3.8281.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: \(\Q\) $\times$ \(\Q(\sqrt{-287}) \) $\times$ 3.3.8281.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/5.6.0.1}{6} }$ R ${\href{/LocalNumberField/11.6.0.1}{6} }$ R ${\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/29.6.0.1}{6} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ R ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.6.5.3$x^{6} - 112$$6$$1$$5$$C_6$$[\ ]_{6}$
$13$13.3.2.2$x^{3} - 13$$3$$1$$2$$C_3$$[\ ]_{3}$
13.3.2.2$x^{3} - 13$$3$$1$$2$$C_3$$[\ ]_{3}$
$41$41.6.3.2$x^{6} - 1681 x^{2} + 895973$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$