Properties

Label 6.0.321575167088.1
Degree $6$
Signature $[0, 3]$
Discriminant $-\,2^{4}\cdot 7^{2}\cdot 743^{3}$
Root discriminant $82.77$
Ramified primes $2, 7, 743$
Class number $1008$
Class group $[3, 336]$
Galois group $D_{6}$ (as 6T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6219, -1782, 599, 152, -3, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 3*x^4 + 152*x^3 + 599*x^2 - 1782*x + 6219)
 
gp: K = bnfinit(x^6 - 2*x^5 - 3*x^4 + 152*x^3 + 599*x^2 - 1782*x + 6219, 1)
 

Normalized defining polynomial

\( x^{6} - 2 x^{5} - 3 x^{4} + 152 x^{3} + 599 x^{2} - 1782 x + 6219 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-321575167088=-\,2^{4}\cdot 7^{2}\cdot 743^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $82.77$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 743$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{12} a^{3} - \frac{1}{4} a^{2} + \frac{5}{12} a - \frac{1}{4}$, $\frac{1}{24} a^{4} - \frac{1}{6} a^{2} + \frac{1}{8}$, $\frac{1}{7776} a^{5} - \frac{79}{7776} a^{4} + \frac{31}{972} a^{3} + \frac{31}{486} a^{2} - \frac{289}{864} a + \frac{23}{864}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{336}$, which has order $1008$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $2$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{5}{144} a^{5} - \frac{23}{144} a^{4} - \frac{7}{18} a^{3} + \frac{53}{9} a^{2} + \frac{171}{16} a - \frac{2865}{16} \),  \( \frac{7}{648} a^{5} + \frac{95}{648} a^{4} + \frac{1}{81} a^{3} + \frac{29}{81} a^{2} + \frac{2057}{72} a + \frac{9881}{72} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 158.393161355 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_6$ (as 6T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 12
The 6 conjugacy class representatives for $D_{6}$
Character table for $D_{6}$

Intermediate fields

\(\Q(\sqrt{-743}) \), 3.1.20804.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Galois closure: Deg 12
Twin sextic algebra: 3.1.20804.1 $\times$ \(\Q(\sqrt{7}) \) $\times$ \(\Q\)
Degree 6 sibling: 6.2.12118579648.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/5.6.0.1}{6} }$ R ${\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
743Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.2e2_7_743.2t1.1c1$1$ $ 2^{2} \cdot 7 \cdot 743 $ $x^{2} + 5201$ $C_2$ (as 2T1) $1$ $-1$
* 1.743.2t1.1c1$1$ $ 743 $ $x^{2} - x + 186$ $C_2$ (as 2T1) $1$ $-1$
1.2e2_7.2t1.1c1$1$ $ 2^{2} \cdot 7 $ $x^{2} - 7$ $C_2$ (as 2T1) $1$ $1$
* 2.2e2_7_743.3t2.1c1$2$ $ 2^{2} \cdot 7 \cdot 743 $ $x^{3} - 31 x - 72$ $S_3$ (as 3T2) $1$ $0$
* 2.2e2_7_743.6t3.6c1$2$ $ 2^{2} \cdot 7 \cdot 743 $ $x^{6} - 2 x^{5} - 3 x^{4} + 152 x^{3} + 599 x^{2} - 1782 x + 6219$ $D_{6}$ (as 6T3) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.