Normalized defining polynomial
\( x^{6} - x^{5} + 2171 x^{4} - 2171 x^{3} + 1347571 x^{2} - 1347571 x + 209884571 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-32122219436447=-\,7^{5}\cdot 17^{3}\cdot 73^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $178.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 17, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(8687=7\cdot 17\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{8687}(1,·)$, $\chi_{8687}(4965,·)$, $\chi_{8687}(2481,·)$, $\chi_{8687}(3722,·)$, $\chi_{8687}(6206,·)$, $\chi_{8687}(8686,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{30369151} a^{4} - \frac{97652}{30369151} a^{3} + \frac{1240}{30369151} a^{2} + \frac{291093}{30369151} a + \frac{192200}{30369151}$, $\frac{1}{30369151} a^{5} + \frac{1550}{30369151} a^{3} - \frac{97031}{30369151} a^{2} + \frac{480500}{30369151} a + \frac{579082}{30369151}$
Class group and class number
$C_{2}\times C_{5418}$, which has order $10836$ (assuming GRH)
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{311}{30369151} a^{4} - \frac{621}{30369151} a^{3} + \frac{385640}{30369151} a^{2} - \frac{577530}{30369151} a + \frac{90143351}{30369151} \), \( \frac{1}{30369151} a^{5} + \frac{1550}{30369151} a^{3} - \frac{97031}{30369151} a^{2} + \frac{480500}{30369151} a - \frac{60159220}{30369151} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2.10181872849 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-8687}) \), \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-8687}) \) $\times$ \(\Q(\zeta_{7})^+\) |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| $17$ | 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $73$ | 73.6.3.1 | $x^{6} - 146 x^{4} + 5329 x^{2} - 76247332$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |