Normalized defining polynomial
\( x^{6} - x^{5} + 373 x^{4} - 249 x^{3} + 47507 x^{2} - 15625 x + 2064257 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-305559728327=-\,7^{4}\cdot 503^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 503$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3521=7\cdot 503\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3521}(1,·)$, $\chi_{3521}(2514,·)$, $\chi_{3521}(2011,·)$, $\chi_{3521}(3019,·)$, $\chi_{3521}(1005,·)$, $\chi_{3521}(2013,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{130830349} a^{5} - \frac{28090554}{130830349} a^{4} + \frac{18727451}{130830349} a^{3} + \frac{61056831}{130830349} a^{2} + \frac{51384766}{130830349} a + \frac{1603832}{10063873}$
Class group and class number
$C_{4}\times C_{252}$, which has order $1008$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{2026}{130830349} a^{5} - \frac{260589}{130830349} a^{4} + \frac{1014516}{130830349} a^{3} - \frac{64370548}{130830349} a^{2} + \frac{95408461}{130830349} a - \frac{323311283}{10063873} \), \( \frac{1006}{130830349} a^{5} + \frac{258060}{130830349} a^{4} + \frac{245450}{130830349} a^{3} + \frac{63738305}{130830349} a^{2} + \frac{15086741}{130830349} a + \frac{315215375}{10063873} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2.10181872849 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-503}) \), \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-503}) \) $\times$ \(\Q(\zeta_{7})^+\) |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 503 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.503.2t1.1c1 | $1$ | $ 503 $ | $x^{2} - x + 126$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.7.3t1.1c1 | $1$ | $ 7 $ | $x^{3} - x^{2} - 2 x + 1$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.7_503.6t1.1c1 | $1$ | $ 7 \cdot 503 $ | $x^{6} - x^{5} + 373 x^{4} - 249 x^{3} + 47507 x^{2} - 15625 x + 2064257$ | $C_6$ (as 6T1) | $0$ | $-1$ |
| * | 1.7.3t1.1c2 | $1$ | $ 7 $ | $x^{3} - x^{2} - 2 x + 1$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.7_503.6t1.1c2 | $1$ | $ 7 \cdot 503 $ | $x^{6} - x^{5} + 373 x^{4} - 249 x^{3} + 47507 x^{2} - 15625 x + 2064257$ | $C_6$ (as 6T1) | $0$ | $-1$ |