Normalized defining polynomial
\( x^{6} - 3 x^{5} + 4 x^{4} - 3 x^{3} - 60653 x^{2} + 60654 x + 1226302572 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-29600300339450887234347=-\,3^{3}\cdot 19^{4}\cdot 61^{4}\cdot 157^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $5561.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19, 61, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{20218} a^{4} - \frac{1}{10109} a^{3} + \frac{1}{10109} a^{2} - \frac{1}{20218} a$, $\frac{1}{3270160410} a^{5} + \frac{8087}{327016041} a^{4} - \frac{60653}{1635080205} a^{3} + \frac{101089}{3270160410} a^{2} + \frac{26956}{53915} a + \frac{13479}{53915}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{735}\times C_{735}$, which has order $14586075$ (assuming GRH)
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{1635080205} a^{5} + \frac{1}{654032082} a^{4} - \frac{40439}{1635080205} a^{3} + \frac{60656}{1635080205} a^{2} + \frac{6739}{1090053470} a + \frac{26957}{53915} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{3}{20218} a^{4} - \frac{3}{10109} a^{3} + \frac{3}{10109} a^{2} - \frac{3}{20218} a - 176 \), \( \frac{1}{1090053470} a^{5} - \frac{16175}{218010694} a^{4} + \frac{101092}{545026735} a^{3} - \frac{222401}{1090053470} a^{2} + \frac{4905311379}{1090053470} a - \frac{9125113}{53915} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 387.8449738439447 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6 |
| The 3 conjugacy class representatives for $S_3$ |
| Character table for $S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.99331600107.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | data not computed |
| Degree 3 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $19$ | 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $61$ | 61.3.2.2 | $x^{3} + 122$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 61.3.2.2 | $x^{3} + 122$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $157$ | 157.3.2.3 | $x^{3} - 3925$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 157.3.2.3 | $x^{3} - 3925$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |