Properties

Label 6.0.28909195092288.2
Degree $6$
Signature $[0, 3]$
Discriminant $-\,2^{6}\cdot 3^{3}\cdot 7^{4}\cdot 191^{3}$
Root discriminant $175.19$
Ramified primes $2, 3, 7, 191$
Class number $10128$ (GRH)
Class group $[2, 5064]$ (GRH)
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![189777601, -657808, 986135, -2286, 1716, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 + 1716*x^4 - 2286*x^3 + 986135*x^2 - 657808*x + 189777601)
 
gp: K = bnfinit(x^6 - 2*x^5 + 1716*x^4 - 2286*x^3 + 986135*x^2 - 657808*x + 189777601, 1)
 

Normalized defining polynomial

\( x^{6} - 2 x^{5} + 1716 x^{4} - 2286 x^{3} + 986135 x^{2} - 657808 x + 189777601 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-28909195092288=-\,2^{6}\cdot 3^{3}\cdot 7^{4}\cdot 191^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $175.19$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 191$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(16044=2^{2}\cdot 3\cdot 7\cdot 191\)
Dirichlet character group:    $\lbrace$$\chi_{16044}(1,·)$, $\chi_{16044}(2293,·)$, $\chi_{16044}(2291,·)$, $\chi_{16044}(11461,·)$, $\chi_{16044}(6875,·)$, $\chi_{16044}(9167,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{12114139141} a^{5} + \frac{5192905350}{12114139141} a^{4} + \frac{5190267246}{12114139141} a^{3} + \frac{426800178}{12114139141} a^{2} + \frac{2602057207}{12114139141} a - \frac{45599345}{931856857}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{5064}$, which has order $10128$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $2$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{9182}{12114139141} a^{5} + \frac{5264724}{12114139141} a^{4} + \frac{10472078}{12114139141} a^{3} + \frac{6012291853}{12114139141} a^{2} + \frac{3006888622}{12114139141} a + \frac{133897930411}{931856857} \),  \( \frac{4584}{12114139141} a^{5} - \frac{5287665}{12114139141} a^{4} + \frac{15782740}{12114139141} a^{3} - \frac{6038524890}{12114139141} a^{2} + \frac{7517322144}{12114139141} a - \frac{134478848920}{931856857} \) (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2.10181872849 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_6$ (as 6T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 6
The 6 conjugacy class representatives for $C_6$
Character table for $C_6$

Intermediate fields

\(\Q(\sqrt{-573}) \), \(\Q(\zeta_{7})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: \(\Q\) $\times$ \(\Q(\sqrt{-573}) \) $\times$ \(\Q(\zeta_{7})^+\)

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }$ R ${\href{/LocalNumberField/11.6.0.1}{6} }$ ${\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/17.6.0.1}{6} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
$3$3.6.3.1$x^{6} - 6 x^{4} + 9 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
$191$191.6.3.2$x^{6} - 36481 x^{2} + 62710839$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$