Normalized defining polynomial
\( x^{6} - 6x^{3} + 12 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-2834352\)
\(\medspace = -\,2^{4}\cdot 3^{11}\)
|
| |
| Root discriminant: | \(11.90\) |
| |
| Galois root discriminant: | $2^{2/3}3^{13/6}\approx 17.15731727394486$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( \frac{1}{2} a^{3} - 1 \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{1}{2}a^{4}-\frac{1}{2}a^{3}+4$, $\frac{1}{2}a^{4}+\frac{3}{2}a^{3}-5$
|
| |
| Regulator: | \( 27.6332760897 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 27.6332760897 \cdot 1}{6\cdot\sqrt{2834352}}\cr\approx \mathstrut & 0.678568723888 \end{aligned}\]
Galois group
$C_3\times S_3$ (as 6T5):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | 18.0.16599265906765726789632.2 |
| Twin sextic algebra: | \(\Q(\zeta_{9})^+\) $\times$ 3.1.972.1 |
| Degree 9 sibling: | 9.3.74384733888.5 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }$ | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }$ | ${\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{3}$ | ${\href{/padicField/19.1.0.1}{1} }^{6}$ | ${\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }$ | ${\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.3.4a1.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 5 x + 1$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
|
\(3\)
| 3.1.6.11a1.10 | $x^{6} + 9 x^{2} + 9 x + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $$[2, \frac{5}{2}]_{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *18 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *18 | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.9.6t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})\) | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.9.6t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})\) | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
| 2.972.3t2.c.a | $2$ | $ 2^{2} \cdot 3^{5}$ | 3.1.972.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
| *18 | 2.972.6t5.c.a | $2$ | $ 2^{2} \cdot 3^{5}$ | 6.0.2834352.3 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
| *18 | 2.972.6t5.c.b | $2$ | $ 2^{2} \cdot 3^{5}$ | 6.0.2834352.3 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |