Normalized defining polynomial
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 + x^4 - 2*x^3 + 3*x^2 - 2*x + 1)
gp: K = bnfinit(x^6 - x^5 + x^4 - 2*x^3 + 3*x^2 - 2*x + 1, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, 3, -2, 1, -1, 1]);
\( x^{6} - x^{5} + x^{4} - 2 x^{3} + 3 x^{2} - 2 x + 1 \)
sage: K.defining_polynomial()
gp: K.pol
magma: DefiningPolynomial(K);
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-27971\)\(\medspace = -\,83\cdot 337\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $5.51$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $83, 337$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$
sage: K.integral_basis()
gp: K.zk
magma: IntegralBasis(K);
Class group and class number
Trivial group, which has order $1$
sage: K.class_group().invariants()
gp: K.clgp
magma: ClassGroup(K);
Unit group
sage: UK = K.unit_group()
magma: UK, f := UnitGroup(K);
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | \( a \), \( a^{4} - a + 1 \) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 0.436494860807 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$S_6$ (as 6T16):
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
magma: GaloisGroup(K);
A non-solvable group of order 720 |
The 11 conjugacy class representatives for $S_6$ |
Character table for $S_6$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
Twin sextic algebra: | 6.4.21883862619611.1 |
Degree 6 sibling: | 6.4.21883862619611.1 |
Degree 10 sibling: | 10.4.21883862619611.1 |
Degree 12 siblings: | Deg 12, Deg 12 |
Degree 15 siblings: | Deg 15, Deg 15 |
Degree 20 siblings: | Deg 20, Deg 20, Deg 20 |
Degree 30 siblings: | data not computed |
Degree 36 sibling: | data not computed |
Degree 40 siblings: | data not computed |
Degree 45 sibling: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }$ | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.5.0.1}{5} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
83 | Data not computed | ||||||
337 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.27971.2t1.a.a | $1$ | $ 83 \cdot 337 $ | \(\Q(\sqrt{-27971}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 5.27971.6t16.a.a | $5$ | $ 83 \cdot 337 $ | 6.0.27971.1 | $S_6$ (as 6T16) | $1$ | $-1$ |
5.782376841.12t183.a.a | $5$ | $ 83^{2} \cdot 337^{2}$ | 6.0.27971.1 | $S_6$ (as 6T16) | $1$ | $-3$ | |
5.612...281.12t183.a.a | $5$ | $ 83^{4} \cdot 337^{4}$ | 6.0.27971.1 | $S_6$ (as 6T16) | $1$ | $1$ | |
5.218...611.6t16.a.a | $5$ | $ 83^{3} \cdot 337^{3}$ | 6.0.27971.1 | $S_6$ (as 6T16) | $1$ | $3$ | |
9.218...611.10t32.a.a | $9$ | $ 83^{3} \cdot 337^{3}$ | 6.0.27971.1 | $S_6$ (as 6T16) | $1$ | $3$ | |
9.478...321.20t145.a.a | $9$ | $ 83^{6} \cdot 337^{6}$ | 6.0.27971.1 | $S_6$ (as 6T16) | $1$ | $-3$ | |
10.478...321.30t164.a.a | $10$ | $ 83^{6} \cdot 337^{6}$ | 6.0.27971.1 | $S_6$ (as 6T16) | $1$ | $2$ | |
10.612...281.30t164.a.a | $10$ | $ 83^{4} \cdot 337^{4}$ | 6.0.27971.1 | $S_6$ (as 6T16) | $1$ | $-2$ | |
16.374...961.36t1252.a.a | $16$ | $ 83^{8} \cdot 337^{8}$ | 6.0.27971.1 | $S_6$ (as 6T16) | $1$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.