Normalized defining polynomial
\( x^{6} - x^{5} + 121 x^{4} - 35 x^{3} + 4929 x^{2} + 36 x + 66609 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-260060583887=-\,13^{3}\cdot 491^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 491$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{15966} a^{5} - \frac{731}{7983} a^{4} - \frac{3341}{15966} a^{3} - \frac{2215}{7983} a^{2} - \frac{1679}{5322} a - \frac{137}{1774}$
Class group and class number
$C_{8}\times C_{8}$, which has order $64$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{31}{7983} a^{5} - \frac{85}{7983} a^{4} + \frac{2869}{7983} a^{3} - \frac{4280}{7983} a^{2} + \frac{21572}{2661} a - \frac{8682}{887} \), \( \frac{181}{7983} a^{5} - \frac{1183}{7983} a^{4} + \frac{9970}{7983} a^{3} - \frac{91343}{7983} a^{2} + \frac{42031}{2661} a - \frac{189779}{887} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40.7538025414 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 6T11):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.1.491.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q(\sqrt{13}) \) $\times$ 4.2.491.1 |
| Degree 6 sibling: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 491 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.13.2t1.1c1 | $1$ | $ 13 $ | $x^{2} - x - 3$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.491.2t1.1c1 | $1$ | $ 491 $ | $x^{2} - x + 123$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.13_491.2t1.1c1 | $1$ | $ 13 \cdot 491 $ | $x^{2} - x + 1596$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.13e2_491.6t3.2c1 | $2$ | $ 13^{2} \cdot 491 $ | $x^{6} - x^{5} - 8 x^{4} - 3 x^{3} + 35 x^{2} - 100 x - 16$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| * | 2.491.3t2.1c1 | $2$ | $ 491 $ | $x^{3} - x^{2} + x + 4$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 3.491.4t5.1c1 | $3$ | $ 491 $ | $x^{4} - x^{3} - x^{2} + 3 x - 1$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| * | 3.13e3_491e2.6t11.2c1 | $3$ | $ 13^{3} \cdot 491^{2}$ | $x^{6} - x^{5} + 121 x^{4} - 35 x^{3} + 4929 x^{2} + 36 x + 66609$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ |
| 3.13e3_491.6t11.2c1 | $3$ | $ 13^{3} \cdot 491 $ | $x^{6} - x^{5} + 121 x^{4} - 35 x^{3} + 4929 x^{2} + 36 x + 66609$ | $S_4\times C_2$ (as 6T11) | $1$ | $1$ | |
| 3.491e2.6t8.2c1 | $3$ | $ 491^{2}$ | $x^{4} - x^{3} - x^{2} + 3 x - 1$ | $S_4$ (as 4T5) | $1$ | $-1$ |