Normalized defining polynomial
\( x^{6} - 2x^{5} - 12x^{4} + 46x^{3} + 23x^{2} - 240x + 225 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: |
\(-25969216\)
\(\medspace = -\,2^{6}\cdot 7^{4}\cdot 13^{2}\)
| sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | \(17.21\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: |
\(2\), \(7\), \(13\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$\card{ \Aut(K/\Q) }$: | $3$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{11}a^{4}+\frac{5}{11}a^{3}-\frac{1}{11}a^{2}-\frac{4}{11}a-\frac{3}{11}$, $\frac{1}{165}a^{5}-\frac{2}{165}a^{4}+\frac{21}{55}a^{3}-\frac{74}{165}a^{2}-\frac{52}{165}a-\frac{3}{11}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{3}$, which has order $3$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: |
\( -\frac{2}{33} a^{5} + \frac{1}{33} a^{4} + \frac{8}{11} a^{3} - \frac{47}{33} a^{2} - \frac{115}{33} a + 7 \)
(order $4$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: |
$\frac{2}{165}a^{5}-\frac{4}{165}a^{4}-\frac{13}{55}a^{3}+\frac{17}{165}a^{2}+\frac{226}{165}a-\frac{17}{11}$, $\frac{29}{165}a^{5}+\frac{2}{165}a^{4}-\frac{116}{55}a^{3}+\frac{599}{165}a^{2}+\frac{1882}{165}a-19$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 19.0957855121 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_3\times S_3$ (as 6T5):
A solvable group of order 18 |
The 9 conjugacy class representatives for $S_3\times C_3$ |
Character table for $S_3\times C_3$ |
Intermediate fields
\(\Q(\sqrt{-1}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Galois closure: | 18.0.84535014172552012147112280064.2 |
Twin sextic algebra: | 3.3.8281.2 $\times$ 3.1.676.1 |
Degree 9 sibling: | 9.3.36343632130624.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{3}$ | ${\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{3}$ | R | ${\href{/padicField/11.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{3}$ | ${\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ | ${\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.6.0.1}{6} }$ | ${\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
\(7\)
| 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
\(13\)
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.364.6t1.g.a | $1$ | $ 2^{2} \cdot 7 \cdot 13 $ | 6.0.4388797504.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.364.6t1.g.b | $1$ | $ 2^{2} \cdot 7 \cdot 13 $ | 6.0.4388797504.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.91.3t1.a.a | $1$ | $ 7 \cdot 13 $ | 3.3.8281.2 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.91.3t1.a.b | $1$ | $ 7 \cdot 13 $ | 3.3.8281.2 | $C_3$ (as 3T1) | $0$ | $1$ | |
2.676.3t2.b.a | $2$ | $ 2^{2} \cdot 13^{2}$ | 3.1.676.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
* | 2.2548.6t5.d.a | $2$ | $ 2^{2} \cdot 7^{2} \cdot 13 $ | 6.0.25969216.3 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.2548.6t5.d.b | $2$ | $ 2^{2} \cdot 7^{2} \cdot 13 $ | 6.0.25969216.3 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |