Normalized defining polynomial
\( x^{6} - x^{5} + 34x^{4} - 9x^{3} + 786x^{2} + 738x + 9099 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-24069811311\)
\(\medspace = -\,3^{3}\cdot 7^{4}\cdot 13^{5}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(53.73\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(3\), \(7\), \(13\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-39}) \) | ||
$\card{ \Gal(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(273=3\cdot 7\cdot 13\) | ||
Dirichlet character group: | $\lbrace$$\chi_{273}(1,·)$, $\chi_{273}(179,·)$, $\chi_{273}(100,·)$, $\chi_{273}(212,·)$, $\chi_{273}(155,·)$, $\chi_{273}(172,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\sqrt{-39}) \), 6.0.24069811311.2$^{3}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{66}a^{4}+\frac{23}{66}a^{3}+\frac{13}{66}a^{2}-\frac{1}{11}a-\frac{3}{22}$, $\frac{1}{39204}a^{5}-\frac{2}{891}a^{4}+\frac{3845}{19602}a^{3}-\frac{857}{13068}a^{2}-\frac{3587}{13068}a-\frac{439}{4356}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}\times C_{12}$, which has order $48$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{5}{1452}a^{5}-\frac{1}{66}a^{4}+\frac{37}{363}a^{3}-\frac{161}{1452}a^{2}+\frac{589}{484}a+\frac{389}{484}$, $\frac{1}{484}a^{5}+\frac{17}{242}a^{3}+\frac{25}{484}a^{2}+\frac{327}{484}a+\frac{581}{484}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 31.7983118742 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 31.7983118742 \cdot 48}{2\cdot\sqrt{24069811311}}\cr\approx \mathstrut & 1.22016501460 \end{aligned}\]
Galois group
A cyclic group of order 6 |
The 6 conjugacy class representatives for $C_6$ |
Character table for $C_6$ |
Intermediate fields
\(\Q(\sqrt{-39}) \), 3.3.8281.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Twin sextic algebra: | 3.3.8281.2 $\times$ \(\Q(\sqrt{-39}) \) $\times$ \(\Q\) |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/5.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/11.1.0.1}{1} }^{6}$ | R | ${\href{/padicField/17.6.0.1}{6} }$ | ${\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.6.0.1}{6} }$ | ${\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(7\)
| 7.6.4.1 | $x^{6} + 14 x^{3} - 245$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
\(13\)
| 13.6.5.2 | $x^{6} + 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.39.2t1.a.a | $1$ | $ 3 \cdot 13 $ | \(\Q(\sqrt{-39}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.91.3t1.a.a | $1$ | $ 7 \cdot 13 $ | 3.3.8281.2 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.273.6t1.h.a | $1$ | $ 3 \cdot 7 \cdot 13 $ | 6.0.24069811311.2 | $C_6$ (as 6T1) | $0$ | $-1$ |
* | 1.91.3t1.a.b | $1$ | $ 7 \cdot 13 $ | 3.3.8281.2 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.273.6t1.h.b | $1$ | $ 3 \cdot 7 \cdot 13 $ | 6.0.24069811311.2 | $C_6$ (as 6T1) | $0$ | $-1$ |