Normalized defining polynomial
\( x^{6} - x^{5} + 201 x^{4} - 143 x^{3} + 16462 x^{2} - 3352 x + 521536 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-23708977432375=-\,5^{3}\cdot 31^{4}\cdot 59^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $169.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(9145=5\cdot 31\cdot 59\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{9145}(1,·)$, $\chi_{9145}(6194,·)$, $\chi_{9145}(3539,·)$, $\chi_{9145}(5016,·)$, $\chi_{9145}(2361,·)$, $\chi_{9145}(1179,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{3919408} a^{5} - \frac{55625}{979852} a^{4} - \frac{504673}{3919408} a^{3} - \frac{51354}{244963} a^{2} + \frac{274567}{979852} a + \frac{1671}{8447}$
Class group and class number
$C_{11768}$, which has order $11768$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{131}{979852} a^{5} + \frac{3097}{979852} a^{4} + \frac{27847}{979852} a^{3} + \frac{390699}{979852} a^{2} + \frac{652321}{489926} a + \frac{123821}{8447} \), \( \frac{163}{1959704} a^{5} - \frac{1622}{244963} a^{4} + \frac{45869}{1959704} a^{3} - \frac{412803}{489926} a^{2} + \frac{661081}{489926} a - \frac{375977}{8447} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48.7831276503 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-295}) \), 3.3.961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-295}) \) $\times$ 3.3.961.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $31$ | 31.6.4.1 | $x^{6} + 1085 x^{3} + 1660608$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| $59$ | 59.6.3.2 | $x^{6} - 3481 x^{2} + 3491443$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |