Normalized defining polynomial
\( x^{6} + 6x^{4} - 3x^{3} + 9x^{2} - 9x + 4 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-2250423\)
\(\medspace = -\,3^{8}\cdot 7^{3}\)
|
| |
| Root discriminant: | \(11.45\) |
| |
| Galois root discriminant: | $3^{16/9}7^{1/2}\approx 18.65368264985934$ | ||
| Ramified primes: |
\(3\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-7}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$
| Monogenic: | No | |
| Index: | $2$ | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{5}+7a^{3}-2a^{2}+12a-7$, $2a^{3}+a^{2}+5a-1$
|
| |
| Regulator: | \( 24.6000769068 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 24.6000769068 \cdot 1}{2\cdot\sqrt{2250423}}\cr\approx \mathstrut & 2.03382693840 \end{aligned}\]
Galois group
$C_3\times S_3$ (as 6T5):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | 18.0.74776048463992972940487.1 |
| Twin sextic algebra: | \(\Q(\zeta_{9})^+\) $\times$ 3.1.567.1 |
| Degree 9 sibling: | 9.3.14765025303.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.3.0.1}{3} }{,}\,{\href{/padicField/2.1.0.1}{1} }^{3}$ | R | ${\href{/padicField/5.6.0.1}{6} }$ | R | ${\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{3}$ | ${\href{/padicField/13.6.0.1}{6} }$ | ${\href{/padicField/17.2.0.1}{2} }^{3}$ | ${\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }$ | ${\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }$ | ${\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.3.8a4.3 | $x^{6} + 9 x^{5} + 33 x^{4} + 68 x^{3} + 84 x^{2} + 60 x + 41$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $$[2, 2]^{2}$$ |
|
\(7\)
| 7.3.2.3a1.2 | $x^{6} + 12 x^{5} + 36 x^{4} + 8 x^{3} + 48 x^{2} + 23$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *18 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *18 | 1.7.2t1.a.a | $1$ | $ 7 $ | \(\Q(\sqrt{-7}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.63.6t1.c.a | $1$ | $ 3^{2} \cdot 7 $ | 6.0.2250423.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.63.6t1.c.b | $1$ | $ 3^{2} \cdot 7 $ | 6.0.2250423.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
| 2.567.3t2.b.a | $2$ | $ 3^{4} \cdot 7 $ | 3.1.567.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
| *18 | 2.567.6t5.d.a | $2$ | $ 3^{4} \cdot 7 $ | 6.0.2250423.2 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
| *18 | 2.567.6t5.d.b | $2$ | $ 3^{4} \cdot 7 $ | 6.0.2250423.2 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |