Normalized defining polynomial
\( x^{6} - 2 x^{5} - 6 x^{4} + 6 x^{3} + 26 x^{2} + 29 x + 13 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-22418019=-\,3^{3}\cdot 13^{2}\cdot 17^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{13} a^{5} + \frac{5}{13} a^{4} + \frac{3}{13} a^{3} + \frac{1}{13} a^{2} - \frac{6}{13} a$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{3}{13} a^{5} - \frac{11}{13} a^{4} - \frac{4}{13} a^{3} + \frac{42}{13} a^{2} + \frac{21}{13} a - 1 \), \( \frac{3}{13} a^{5} - \frac{11}{13} a^{4} - \frac{4}{13} a^{3} + \frac{29}{13} a^{2} + \frac{47}{13} a + 2 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6.8479815053 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 6T5):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-51}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | 18.0.54381578892591924651626528931.1 |
| Twin sextic algebra: | 3.3.169.1 $\times$ 3.1.8619.1 |
| Degree 9 sibling: | 9.3.640281040659.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | R | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $17$ | 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3_17.2t1.1c1 | $1$ | $ 3 \cdot 17 $ | $x^{2} - x + 13$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.13.3t1.1c1 | $1$ | $ 13 $ | $x^{3} - x^{2} - 4 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.3_13_17.6t1.1c1 | $1$ | $ 3 \cdot 13 \cdot 17 $ | $x^{6} - x^{5} + 30 x^{4} - 15 x^{3} + 509 x^{2} - 374 x + 3775$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.3_13_17.6t1.1c2 | $1$ | $ 3 \cdot 13 \cdot 17 $ | $x^{6} - x^{5} + 30 x^{4} - 15 x^{3} + 509 x^{2} - 374 x + 3775$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.13.3t1.1c2 | $1$ | $ 13 $ | $x^{3} - x^{2} - 4 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 2.3_13e2_17.3t2.1c1 | $2$ | $ 3 \cdot 13^{2} \cdot 17 $ | $x^{3} - x^{2} + 9 x + 12$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| * | 2.3_13_17.6t5.1c1 | $2$ | $ 3 \cdot 13 \cdot 17 $ | $x^{6} - 2 x^{5} - 6 x^{4} + 6 x^{3} + 26 x^{2} + 29 x + 13$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
| * | 2.3_13_17.6t5.1c2 | $2$ | $ 3 \cdot 13 \cdot 17 $ | $x^{6} - 2 x^{5} - 6 x^{4} + 6 x^{3} + 26 x^{2} + 29 x + 13$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |