Properties

Label 6.0.223587.2
Degree $6$
Signature $[0, 3]$
Discriminant $-\,3^{3}\cdot 7^{2}\cdot 13^{2}$
Root discriminant $7.79$
Ramified primes $3, 7, 13$
Class number $1$
Class group Trivial
Galois group $S_3\times C_3$ (as 6T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 2, -5, -2, 1, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 + x^4 - 2*x^3 - 5*x^2 + 2*x + 4)
 
gp: K = bnfinit(x^6 + x^4 - 2*x^3 - 5*x^2 + 2*x + 4, 1)
 

Normalized defining polynomial

\( x^{6} + x^{4} - 2 x^{3} - 5 x^{2} + 2 x + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-223587=-\,3^{3}\cdot 7^{2}\cdot 13^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $7.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $2$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1}{2} a^{4} + a^{2} - \frac{1}{2} a - 1 \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{2} a^{5} + \frac{1}{2} a^{4} + a^{3} + \frac{1}{2} a^{2} - \frac{5}{2} a - 2 \),  \( \frac{1}{2} a^{5} + \frac{1}{2} a^{4} + a^{3} + \frac{1}{2} a^{2} - \frac{5}{2} a \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6.17969009809 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times S_3$ (as 6T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3\times C_3$
Character table for $S_3\times C_3$

Intermediate fields

\(\Q(\sqrt{-3}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Galois closure: 18.0.6347285018761982937208599123.5
Twin sextic algebra: 3.3.8281.1 $\times$ 3.1.24843.1
Degree 9 sibling: 9.3.15332469805107.4

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.2.0.1}{2} }^{3}$ R ${\href{/LocalNumberField/5.6.0.1}{6} }$ R ${\href{/LocalNumberField/11.6.0.1}{6} }$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$7$7.3.2.3$x^{3} - 28$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
$13$13.3.2.1$x^{3} + 26$$3$$1$$2$$C_3$$[\ ]_{3}$
13.3.0.1$x^{3} - 2 x + 6$$1$$3$$0$$C_3$$[\ ]^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
1.3_7_13.6t1.6c1$1$ $ 3 \cdot 7 \cdot 13 $ $x^{6} - x^{5} + 31 x^{4} - 98 x^{3} + 964 x^{2} - 1920 x + 4096$ $C_6$ (as 6T1) $0$ $-1$
1.3_7_13.6t1.6c2$1$ $ 3 \cdot 7 \cdot 13 $ $x^{6} - x^{5} + 31 x^{4} - 98 x^{3} + 964 x^{2} - 1920 x + 4096$ $C_6$ (as 6T1) $0$ $-1$
1.7_13.3t1.2c1$1$ $ 7 \cdot 13 $ $x^{3} - x^{2} - 30 x + 64$ $C_3$ (as 3T1) $0$ $1$
1.7_13.3t1.2c2$1$ $ 7 \cdot 13 $ $x^{3} - x^{2} - 30 x + 64$ $C_3$ (as 3T1) $0$ $1$
2.3_7e2_13e2.3t2.1c1$2$ $ 3 \cdot 7^{2} \cdot 13^{2}$ $x^{3} - 91$ $S_3$ (as 3T2) $1$ $0$
* 2.3_7_13.6t5.2c1$2$ $ 3 \cdot 7 \cdot 13 $ $x^{6} + x^{4} - 2 x^{3} - 5 x^{2} + 2 x + 4$ $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.3_7_13.6t5.2c2$2$ $ 3 \cdot 7 \cdot 13 $ $x^{6} + x^{4} - 2 x^{3} - 5 x^{2} + 2 x + 4$ $S_3\times C_3$ (as 6T5) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.