Normalized defining polynomial
\( x^{6} + x^{4} - 2x^{3} - 5x^{2} + 2x + 4 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-223587\)
\(\medspace = -\,3^{3}\cdot 7^{2}\cdot 13^{2}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(7.79\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(3\), \(7\), \(13\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
$\card{ \Aut(K/\Q) }$: | $3$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$
Monogenic: | No | |
Index: | $4$ | |
Inessential primes: | $2$ |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( \frac{1}{2} a^{4} + a^{2} - \frac{1}{2} a - 1 \)
(order $6$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1}{2}a^{5}+\frac{1}{2}a^{4}+a^{3}+\frac{1}{2}a^{2}-\frac{5}{2}a-2$, $\frac{1}{2}a^{5}+\frac{1}{2}a^{4}+a^{3}+\frac{1}{2}a^{2}-\frac{5}{2}a$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 6.17969009809 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) = \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}} \approx\frac{2^{0}\cdot(2\pi)^{3}\cdot 6.17969009809 \cdot 1}{6\cdot\sqrt{223587}}\approx 0.540296030368$
Galois group
$C_3\times S_3$ (as 6T5):
A solvable group of order 18 |
The 9 conjugacy class representatives for $S_3\times C_3$ |
Character table for $S_3\times C_3$ |
Intermediate fields
\(\Q(\sqrt{-3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Galois closure: | 18.0.6347285018761982937208599123.5 |
Twin sextic algebra: | 3.3.8281.1 $\times$ 3.1.24843.1 |
Degree 9 sibling: | 9.3.15332469805107.4 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/5.6.0.1}{6} }$ | R | ${\href{/padicField/11.6.0.1}{6} }$ | R | ${\href{/padicField/17.2.0.1}{2} }^{3}$ | ${\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }$ | ${\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }$ | ${\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
\(7\)
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
\(13\)
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.273.6t1.c.a | $1$ | $ 3 \cdot 7 \cdot 13 $ | 6.0.1851523947.2 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.273.6t1.c.b | $1$ | $ 3 \cdot 7 \cdot 13 $ | 6.0.1851523947.2 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.91.3t1.b.a | $1$ | $ 7 \cdot 13 $ | 3.3.8281.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.91.3t1.b.b | $1$ | $ 7 \cdot 13 $ | 3.3.8281.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
2.24843.3t2.a.a | $2$ | $ 3 \cdot 7^{2} \cdot 13^{2}$ | 3.1.24843.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
* | 2.273.6t5.d.a | $2$ | $ 3 \cdot 7 \cdot 13 $ | 6.0.223587.2 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.273.6t5.d.b | $2$ | $ 3 \cdot 7 \cdot 13 $ | 6.0.223587.2 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |