Normalized defining polynomial
\( x^{6} - x^{5} + 563 x^{4} + 1141 x^{3} + 62116 x^{2} + 61540 x + 1661392 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21886175968511=-\,43^{5}\cdot 53^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $167.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2279=43\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2279}(1,·)$, $\chi_{2279}(2278,·)$, $\chi_{2279}(1112,·)$, $\chi_{2279}(953,·)$, $\chi_{2279}(1326,·)$, $\chi_{2279}(1167,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{24} a^{4} - \frac{1}{12} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{3}$, $\frac{1}{1247127552} a^{5} + \frac{5636023}{415709184} a^{4} - \frac{131801167}{1247127552} a^{3} - \frac{74227223}{415709184} a^{2} + \frac{136395059}{623563776} a + \frac{1088881}{155890944}$
Class group and class number
$C_{10136}$, which has order $10136$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{14675}{623563776} a^{5} - \frac{168875}{207854592} a^{4} + \frac{8780131}{623563776} a^{3} - \frac{74471797}{207854592} a^{2} + \frac{113660809}{311781888} a - \frac{2233929949}{77945472} \), \( \frac{3061}{623563776} a^{5} - \frac{64733}{207854592} a^{4} + \frac{2390885}{623563776} a^{3} - \frac{24460547}{207854592} a^{2} + \frac{29327567}{311781888} a + \frac{449082277}{77945472} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 75.6874575318 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-2279}) \), 3.3.1849.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-2279}) \) $\times$ 3.3.1849.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.6.5.5 | $x^{6} + 31347$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| $53$ | 53.6.3.1 | $x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |