Normalized defining polynomial
\( x^{6} - 3x^{5} - 30x^{4} - 5x^{3} + 519x^{2} + 1548x + 1875 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-20967191091\) \(\medspace = -\,3^{8}\cdot 7^{4}\cdot 11^{3}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(52.51\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{4/3}7^{2/3}11^{1/2}\approx 52.51177625135337$ | ||
Ramified primes: | \(3\), \(7\), \(11\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-11}) \) | ||
$\card{ \Gal(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(693=3^{2}\cdot 7\cdot 11\) | ||
Dirichlet character group: | $\lbrace$$\chi_{693}(1,·)$, $\chi_{693}(67,·)$, $\chi_{693}(571,·)$, $\chi_{693}(505,·)$, $\chi_{693}(331,·)$, $\chi_{693}(142,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\sqrt{-11}) \), 6.0.20967191091.5$^{3}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{64205}a^{5}-\frac{3813}{12841}a^{4}+\frac{3340}{12841}a^{3}-\frac{1403}{12841}a^{2}-\frac{18566}{64205}a+\frac{1736}{12841}$
Monogenic: | No | |
Index: | $5$ | |
Inessential primes: | $5$ |
Class group and class number
$C_{12}\times C_{12}$, which has order $144$
Relative class number: $48$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{192}{64205}a^{5}-\frac{159}{12841}a^{4}-\frac{770}{12841}a^{3}+\frac{285}{12841}a^{2}+\frac{30808}{64205}a+\frac{12287}{12841}$, $\frac{1206}{64205}a^{5}-\frac{1400}{12841}a^{4}-\frac{4034}{12841}a^{3}+\frac{15835}{12841}a^{2}+\frac{402179}{64205}a+\frac{103261}{12841}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 16.806760169 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 16.806760169 \cdot 144}{2\cdot\sqrt{20967191091}}\cr\approx \mathstrut & 2.0729363999 \end{aligned}\]
Galois group
A cyclic group of order 6 |
The 6 conjugacy class representatives for $C_6$ |
Character table for $C_6$ |
Intermediate fields
\(\Q(\sqrt{-11}) \), 3.3.3969.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-11}) \) $\times$ 3.3.3969.2 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }$ | R | ${\href{/padicField/5.1.0.1}{1} }^{6}$ | R | R | ${\href{/padicField/13.6.0.1}{6} }$ | ${\href{/padicField/17.6.0.1}{6} }$ | ${\href{/padicField/19.6.0.1}{6} }$ | ${\href{/padicField/23.1.0.1}{1} }^{6}$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }$ | ${\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.3.4.3 | $x^{3} + 6 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
3.3.4.3 | $x^{3} + 6 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
\(7\) | 7.6.4.2 | $x^{6} - 42 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
\(11\) | 11.2.1.2 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
11.2.1.2 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.11.2t1.a.a | $1$ | $ 11 $ | \(\Q(\sqrt{-11}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.63.3t1.a.a | $1$ | $ 3^{2} \cdot 7 $ | 3.3.3969.2 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.693.6t1.c.a | $1$ | $ 3^{2} \cdot 7 \cdot 11 $ | 6.0.20967191091.5 | $C_6$ (as 6T1) | $0$ | $-1$ |
* | 1.63.3t1.a.b | $1$ | $ 3^{2} \cdot 7 $ | 3.3.3969.2 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.693.6t1.c.b | $1$ | $ 3^{2} \cdot 7 \cdot 11 $ | 6.0.20967191091.5 | $C_6$ (as 6T1) | $0$ | $-1$ |