Normalized defining polynomial
\( x^{6} - 3 x^{5} - 4 x^{4} + 12 x^{3} + 14 x^{2} - 26 x + 16 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20891648=-\,2^{11}\cdot 101^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{118} a^{5} - \frac{21}{118} a^{4} + \frac{10}{59} a^{3} + \frac{3}{59} a^{2} + \frac{12}{59} a + \frac{7}{59}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{31}{59} a^{5} - \frac{61}{59} a^{4} - \frac{206}{59} a^{3} + \frac{186}{59} a^{2} + \frac{744}{59} a - \frac{97}{59} \), \( \frac{9}{59} a^{5} - \frac{12}{59} a^{4} - \frac{115}{59} a^{3} + \frac{231}{59} a^{2} + \frac{39}{59} a - \frac{51}{59} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35.7443318731 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 6T11):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.1.808.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q(\sqrt{101}) \) $\times$ 4.2.206848.1 |
| Degree 6 sibling: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.4.11.13 | $x^{4} + 4 x^{2} + 14$ | $4$ | $1$ | $11$ | $D_{4}$ | $[3, 4]^{2}$ | |
| $101$ | 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.101.2t1.1c1 | $1$ | $ 101 $ | $x^{2} - x - 25$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e3_101.2t1.2c1 | $1$ | $ 2^{3} \cdot 101 $ | $x^{2} + 202$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e3.2t1.2c1 | $1$ | $ 2^{3}$ | $x^{2} + 2$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.2e3_101.6t3.1c1 | $2$ | $ 2^{3} \cdot 101 $ | $x^{6} - x^{5} - 11 x^{4} - 8 x^{3} - x^{2} - 7 x - 25$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| * | 2.2e3_101.3t2.1c1 | $2$ | $ 2^{3} \cdot 101 $ | $x^{3} - x^{2} + 2 x - 6$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 3.2e11_101.4t5.1c1 | $3$ | $ 2^{11} \cdot 101 $ | $x^{4} - 8 x - 46$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| * | 3.2e8_101.6t11.1c1 | $3$ | $ 2^{8} \cdot 101 $ | $x^{6} - 3 x^{5} - 4 x^{4} + 12 x^{3} + 14 x^{2} - 26 x + 16$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ |
| 3.2e11_101e2.6t11.1c1 | $3$ | $ 2^{11} \cdot 101^{2}$ | $x^{6} - 3 x^{5} - 4 x^{4} + 12 x^{3} + 14 x^{2} - 26 x + 16$ | $S_4\times C_2$ (as 6T11) | $1$ | $1$ | |
| 3.2e8_101e2.6t8.3c1 | $3$ | $ 2^{8} \cdot 101^{2}$ | $x^{4} - 8 x - 46$ | $S_4$ (as 4T5) | $1$ | $-1$ |