Normalized defining polynomial
\( x^{6} - 3 x^{5} + 69 x^{4} - 133 x^{3} + 888 x^{2} - 822 x + 1027 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-202365391311=-\,3^{3}\cdot 19^{3}\cdot 103^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{171} a^{4} - \frac{2}{171} a^{3} + \frac{3}{19} a^{2} - \frac{26}{171} a - \frac{47}{171}$, $\frac{1}{171} a^{5} + \frac{23}{171} a^{3} + \frac{28}{171} a^{2} + \frac{8}{19} a + \frac{77}{171}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{4}$, which has order $64$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{171} a^{4} - \frac{2}{171} a^{3} + \frac{3}{19} a^{2} - \frac{26}{171} a + \frac{124}{171} \), \( \frac{2}{171} a^{4} - \frac{4}{171} a^{3} + \frac{37}{57} a^{2} - \frac{109}{171} a + \frac{134}{171} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18.2058029492 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 6T11):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.3.1957.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 4.4.1957.1 $\times$ \(\Q(\sqrt{-3}) \) |
| Degree 6 sibling: | 6.0.103405923.1 |
| Degree 8 siblings: | 8.0.310217769.2, 8.0.1188087212386881.9 |
| Degree 12 siblings: | Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12 |
| Degree 16 sibling: | Deg 16 |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 103 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.19_103.2t1.1c1 | $1$ | $ 19 \cdot 103 $ | $x^{2} - x - 489$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.3_19_103.2t1.1c1 | $1$ | $ 3 \cdot 19 \cdot 103 $ | $x^{2} - x + 1468$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.3e2_19_103.6t3.4c1 | $2$ | $ 3^{2} \cdot 19 \cdot 103 $ | $x^{6} - x^{5} + 10 x^{4} - 11 x^{3} + 91 x^{2} - 90 x + 100$ | $D_{6}$ (as 6T3) | $1$ | $-2$ | |
| * | 2.19_103.3t2.1c1 | $2$ | $ 19 \cdot 103 $ | $x^{3} - x^{2} - 9 x + 10$ | $S_3$ (as 3T2) | $1$ | $2$ |
| 3.19_103.4t5.1c1 | $3$ | $ 19 \cdot 103 $ | $x^{4} - 4 x^{2} - x + 1$ | $S_4$ (as 4T5) | $1$ | $3$ | |
| * | 3.3e3_19e2_103e2.6t11.2c1 | $3$ | $ 3^{3} \cdot 19^{2} \cdot 103^{2}$ | $x^{6} - 3 x^{5} + 69 x^{4} - 133 x^{3} + 888 x^{2} - 822 x + 1027$ | $S_4\times C_2$ (as 6T11) | $1$ | $-3$ |
| 3.3e3_19_103.6t11.2c1 | $3$ | $ 3^{3} \cdot 19 \cdot 103 $ | $x^{6} - 3 x^{5} + 69 x^{4} - 133 x^{3} + 888 x^{2} - 822 x + 1027$ | $S_4\times C_2$ (as 6T11) | $1$ | $-3$ | |
| 3.19e2_103e2.6t8.1c1 | $3$ | $ 19^{2} \cdot 103^{2}$ | $x^{4} - 4 x^{2} - x + 1$ | $S_4$ (as 4T5) | $1$ | $3$ |