Normalized defining polynomial
\( x^{6} - 3 x^{5} - 1791 x^{4} - 16881 x^{3} + 843462 x^{2} + 17882964 x + 98667864 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20196089557410375=-\,3^{9}\cdot 5^{3}\cdot 7^{4}\cdot 43^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $521.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(13545=3^{2}\cdot 5\cdot 7\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{13545}(1,·)$, $\chi_{13545}(1726,·)$, $\chi_{13545}(3914,·)$, $\chi_{13545}(10154,·)$, $\chi_{13545}(12119,·)$, $\chi_{13545}(12721,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{408} a^{4} - \frac{1}{204} a^{3} + \frac{13}{136} a^{2} - \frac{29}{68} a$, $\frac{1}{1121184} a^{5} + \frac{265}{373728} a^{4} + \frac{9353}{373728} a^{3} + \frac{75107}{373728} a^{2} - \frac{12627}{31144} a + \frac{427}{1832}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{2382}$, which has order $114336$ (assuming GRH)
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1543}{186864} a^{5} - \frac{30983}{186864} a^{4} - \frac{748273}{62288} a^{3} + \frac{4239777}{62288} a^{2} + \frac{5346721}{916} a + \frac{42863159}{916} \), \( \frac{1}{23358} a^{5} - \frac{13}{46716} a^{4} - \frac{247}{3893} a^{3} - \frac{10773}{15572} a^{2} + \frac{58469}{7786} a + \frac{23401}{229} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 265.3617536785364 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.3.7338681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.1 | $x^{6} + 3 x^{4} + 15$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| $43$ | 43.6.4.3 | $x^{6} + 215 x^{3} + 16641$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |