Normalized defining polynomial
\( x^{6} - 2 x^{5} + 49 x^{4} - 66 x^{3} + 629 x^{2} - 320 x + 1838 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2010627584=-\,2^{9}\cdot 7^{3}\cdot 107^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{128917} a^{5} + \frac{39882}{128917} a^{4} - \frac{53126}{128917} a^{3} + \frac{2362}{128917} a^{2} - \frac{31690}{128917} a - \frac{22012}{128917}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{320}{128917} a^{5} - \frac{543}{128917} a^{4} + \frac{16724}{128917} a^{3} - \frac{17662}{128917} a^{2} + \frac{172560}{128917} a + \frac{46595}{128917} \), \( \frac{1070}{128917} a^{5} + \frac{2213}{128917} a^{4} + \frac{7577}{128917} a^{3} + \frac{77917}{128917} a^{2} - \frac{3129}{128917} a + \frac{296805}{128917} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18.3773866581 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_{6}$ |
| Character table for $D_{6}$ |
Intermediate fields
| \(\Q(\sqrt{-14}) \), 3.1.107.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | data not computed |
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{1498}) \) $\times$ 3.1.107.1 |
| Degree 6 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $107$ | 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.107.2t1.1c1 | $1$ | $ 107 $ | $x^{2} - x + 27$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e3_7_107.2t1.1c1 | $1$ | $ 2^{3} \cdot 7 \cdot 107 $ | $x^{2} - 1498$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.2e3_7.2t1.2c1 | $1$ | $ 2^{3} \cdot 7 $ | $x^{2} + 14$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 2.107.3t2.1c1 | $2$ | $ 107 $ | $x^{3} - x^{2} + 3 x - 2$ | $S_3$ (as 3T2) | $1$ | $0$ |
| * | 2.2e6_7e2_107.6t3.2c1 | $2$ | $ 2^{6} \cdot 7^{2} \cdot 107 $ | $x^{6} - 2 x^{5} + 49 x^{4} - 66 x^{3} + 629 x^{2} - 320 x + 1838$ | $D_{6}$ (as 6T3) | $1$ | $0$ |