Normalized defining polynomial
\( x^{6} - x^{5} + 9 x^{4} - 6 x^{3} + 45 x^{2} - 25 x + 125 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-192143824=-\,2^{4}\cdot 229^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{10} a^{4} - \frac{1}{10} a^{3} + \frac{2}{5} a^{2} - \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{50} a^{5} - \frac{1}{50} a^{4} - \frac{8}{25} a^{3} + \frac{19}{50} a^{2} - \frac{1}{10} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{10} a^{4} - \frac{1}{10} a^{3} + \frac{2}{5} a^{2} - \frac{1}{10} a + \frac{3}{2} \), \( \frac{1}{10} a^{4} - \frac{1}{10} a^{3} + \frac{2}{5} a^{2} - \frac{1}{10} a + \frac{7}{2} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9.42181836338 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 6T11):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.3.229.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 4.4.14656.1 $\times$ \(\Q(\sqrt{-1}) \) |
| Degree 6 sibling: | 6.0.839056.1 |
| Degree 8 siblings: | 8.0.214798336.3, 8.0.11264239538176.6 |
| Degree 12 siblings: | Deg 12, Deg 12, Deg 12, 12.0.180227832610816.1, Deg 12, Deg 12 |
| Degree 16 sibling: | Deg 16 |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 229 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e2_229.2t1.1c1 | $1$ | $ 2^{2} \cdot 229 $ | $x^{2} + 229$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.229.2t1.1c1 | $1$ | $ 229 $ | $x^{2} - x - 57$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e2.2t1.1c1 | $1$ | $ 2^{2}$ | $x^{2} + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.2e4_229.6t3.2c1 | $2$ | $ 2^{4} \cdot 229 $ | $x^{6} + 8 x^{4} + 16 x^{2} + 1$ | $D_{6}$ (as 6T3) | $1$ | $-2$ | |
| * | 2.229.3t2.1c1 | $2$ | $ 229 $ | $x^{3} - 4 x - 1$ | $S_3$ (as 3T2) | $1$ | $2$ |
| 3.2e6_229.4t5.1c1 | $3$ | $ 2^{6} \cdot 229 $ | $x^{4} - 2 x^{3} - 4 x^{2} + 4 x + 2$ | $S_4$ (as 4T5) | $1$ | $3$ | |
| 3.2e4_229.6t11.4c1 | $3$ | $ 2^{4} \cdot 229 $ | $x^{6} - x^{5} + 9 x^{4} - 6 x^{3} + 45 x^{2} - 25 x + 125$ | $S_4\times C_2$ (as 6T11) | $1$ | $-3$ | |
| * | 3.2e4_229e2.6t11.4c1 | $3$ | $ 2^{4} \cdot 229^{2}$ | $x^{6} - x^{5} + 9 x^{4} - 6 x^{3} + 45 x^{2} - 25 x + 125$ | $S_4\times C_2$ (as 6T11) | $1$ | $-3$ |
| 3.2e6_229e2.6t8.1c1 | $3$ | $ 2^{6} \cdot 229^{2}$ | $x^{4} - 2 x^{3} - 4 x^{2} + 4 x + 2$ | $S_4$ (as 4T5) | $1$ | $3$ |