Normalized defining polynomial
\( x^{6} - x^{5} + 55 x^{4} - 284 x^{3} + 3085 x^{2} - 9126 x + 28561 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-19059617547=-\,3^{3}\cdot 163^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(489=3\cdot 163\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{489}(1,·)$, $\chi_{489}(164,·)$, $\chi_{489}(104,·)$, $\chi_{489}(58,·)$, $\chi_{489}(221,·)$, $\chi_{489}(430,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{27132781} a^{5} - \frac{8669701}{27132781} a^{4} - \frac{11556503}{27132781} a^{3} + \frac{11556443}{27132781} a^{2} - \frac{6894481}{27132781} a - \frac{2970}{160549}$
Class group and class number
$C_{4}\times C_{12}$, which has order $48$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2970}{27132781} a^{5} + \frac{2801}{27132781} a^{4} - \frac{154055}{27132781} a^{3} + \frac{332255}{27132781} a^{2} - \frac{8641085}{27132781} a + \frac{151254}{160549} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{91854}{27132781} a^{5} + \frac{406696}{27132781} a^{4} + \frac{4764501}{27132781} a^{3} - \frac{10275741}{27132781} a^{2} + \frac{101981890}{27132781} a + \frac{287469}{160549} \), \( \frac{121263}{27132781} a^{5} - \frac{86956}{27132781} a^{4} + \frac{4782580}{27132781} a^{3} - \frac{39191141}{27132781} a^{2} + \frac{268259260}{27132781} a - \frac{4695624}{160549} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25.7749395289 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.26569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 3.3.26569.1 $\times$ \(\Q(\sqrt{-3}) \) $\times$ \(\Q\) |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $163$ | 163.3.2.1 | $x^{3} - 163$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 163.3.2.1 | $x^{3} - 163$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.163.3t1.1c1 | $1$ | $ 163 $ | $x^{3} - x^{2} - 54 x + 169$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3_163.6t1.2c1 | $1$ | $ 3 \cdot 163 $ | $x^{6} - x^{5} + 55 x^{4} - 284 x^{3} + 3085 x^{2} - 9126 x + 28561$ | $C_6$ (as 6T1) | $0$ | $-1$ |
| * | 1.163.3t1.1c2 | $1$ | $ 163 $ | $x^{3} - x^{2} - 54 x + 169$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3_163.6t1.2c2 | $1$ | $ 3 \cdot 163 $ | $x^{6} - x^{5} + 55 x^{4} - 284 x^{3} + 3085 x^{2} - 9126 x + 28561$ | $C_6$ (as 6T1) | $0$ | $-1$ |