Properties

Label 6.0.190102016.3
Degree $6$
Signature $[0, 3]$
Discriminant $-190102016$
Root discriminant \(23.98\)
Ramified primes see page
Class number $18$
Class group $[18]$
Galois group $S_3\times C_3$ (as 6T5)

Related objects

Downloads

Learn more

Show commands: SageMath / Pari/GP / Magma

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 7*x^4 + 6*x^3 + 44*x^2 + 60*x + 27)
 
gp: K = bnfinit(x^6 - 2*x^5 - 7*x^4 + 6*x^3 + 44*x^2 + 60*x + 27, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![27, 60, 44, 6, -7, -2, 1]);
 

\( x^{6} - 2x^{5} - 7x^{4} + 6x^{3} + 44x^{2} + 60x + 27 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $6$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[0, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:   \(-190102016\) \(\medspace = -\,2^{9}\cdot 13^{5}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  \(23.98\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:   \(2\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$\card{ \Aut(K/\Q) }$:  $3$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{21}a^{5}+\frac{1}{21}a^{4}-\frac{4}{21}a^{3}-\frac{2}{7}a^{2}+\frac{5}{21}a-\frac{3}{7}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{18}$, which has order $18$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $2$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:   $\frac{5}{21}a^{5}-\frac{16}{21}a^{4}-\frac{20}{21}a^{3}+\frac{18}{7}a^{2}+\frac{172}{21}a+\frac{41}{7}$, $a^{5}-3a^{4}-4a^{3}+10a^{2}+34a+26$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 8.54468341714 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{0}\cdot(2\pi)^{3}\cdot 8.54468341714 \cdot 18}{2\sqrt{190102016}}\approx 1.38351773261$

Galois group

$C_3\times S_3$ (as 6T5):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3\times C_3$
Character table for $S_3\times C_3$

Intermediate fields

\(\Q(\sqrt{-26}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Galois closure: 18.0.6870054266002333390340096.1
Twin sextic algebra: 3.3.169.1 $\times$ 3.1.104.1
Degree 9 sibling: 9.3.32127240704.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.1.0.1}{1} }^{3}$ ${\href{/padicField/5.3.0.1}{3} }^{2}$ ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{3}$ ${\href{/padicField/11.6.0.1}{6} }$ R ${\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{3}$ ${\href{/padicField/19.6.0.1}{6} }$ ${\href{/padicField/23.6.0.1}{6} }$ ${\href{/padicField/29.6.0.1}{6} }$ ${\href{/padicField/31.1.0.1}{1} }^{6}$ ${\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ ${\href{/padicField/41.6.0.1}{6} }$ ${\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ ${\href{/padicField/47.3.0.1}{3} }^{2}$ ${\href{/padicField/53.2.0.1}{2} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.9.7$x^{6} + 4 x^{4} + 4 x^{2} - 24$$2$$3$$9$$C_6$$[3]^{3}$
\(13\) Copy content Toggle raw display 13.6.5.5$x^{6} + 104$$6$$1$$5$$C_6$$[\ ]_{6}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.104.2t1.b.a$1$ $ 2^{3} \cdot 13 $ \(\Q(\sqrt{-26}) \) $C_2$ (as 2T1) $1$ $-1$
1.104.6t1.b.a$1$ $ 2^{3} \cdot 13 $ 6.0.190102016.1 $C_6$ (as 6T1) $0$ $-1$
1.104.6t1.b.b$1$ $ 2^{3} \cdot 13 $ 6.0.190102016.1 $C_6$ (as 6T1) $0$ $-1$
1.13.3t1.a.a$1$ $ 13 $ 3.3.169.1 $C_3$ (as 3T1) $0$ $1$
1.13.3t1.a.b$1$ $ 13 $ 3.3.169.1 $C_3$ (as 3T1) $0$ $1$
2.104.3t2.b.a$2$ $ 2^{3} \cdot 13 $ 3.1.104.1 $S_3$ (as 3T2) $1$ $0$
* 2.1352.6t5.a.a$2$ $ 2^{3} \cdot 13^{2}$ 6.0.190102016.3 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.1352.6t5.a.b$2$ $ 2^{3} \cdot 13^{2}$ 6.0.190102016.3 $S_3\times C_3$ (as 6T5) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.