Normalized defining polynomial
\( x^{6} - x^{5} + 10 x^{4} + 161 x^{3} + 628 x^{2} + 1160 x + 841 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18921318199=-\,7^{4}\cdot 199^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2320} a^{5} - \frac{3}{232} a^{4} + \frac{11}{29} a^{3} + \frac{161}{2320} a^{2} + \frac{599}{2320} a + \frac{1}{80}$
Class group and class number
$C_{3}\times C_{3}\times C_{27}$, which has order $243$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{471}{1160} a^{5} - \frac{137}{116} a^{4} + \frac{183}{29} a^{3} + \frac{61911}{1160} a^{2} + \frac{177729}{1160} a + \frac{7151}{40} \), \( \frac{129}{1160} a^{5} - \frac{39}{116} a^{4} + \frac{54}{29} a^{3} + \frac{16129}{1160} a^{2} + \frac{49431}{1160} a + \frac{2129}{40} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23.7183840945 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 6T5):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-199}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | data not computed |
| Twin sextic algebra: | 3.1.199.1 $\times$ \(\Q(\zeta_{7})^+\) |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $199$ | 199.6.3.2 | $x^{6} - 39601 x^{2} + 31522396$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.199.2t1.1c1 | $1$ | $ 199 $ | $x^{2} - x + 50$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.7.3t1.1c1 | $1$ | $ 7 $ | $x^{3} - x^{2} - 2 x + 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.7_199.6t1.1c1 | $1$ | $ 7 \cdot 199 $ | $x^{6} - x^{5} + 145 x^{4} - 97 x^{3} + 7455 x^{2} - 2401 x + 135149$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.7_199.6t1.1c2 | $1$ | $ 7 \cdot 199 $ | $x^{6} - x^{5} + 145 x^{4} - 97 x^{3} + 7455 x^{2} - 2401 x + 135149$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.7.3t1.1c2 | $1$ | $ 7 $ | $x^{3} - x^{2} - 2 x + 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 2.199.3t2.1c1 | $2$ | $ 199 $ | $x^{3} - x^{2} + 4 x - 1$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| * | 2.7e2_199.6t5.1c1 | $2$ | $ 7^{2} \cdot 199 $ | $x^{6} - x^{5} + 10 x^{4} + 161 x^{3} + 628 x^{2} + 1160 x + 841$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
| * | 2.7e2_199.6t5.1c2 | $2$ | $ 7^{2} \cdot 199 $ | $x^{6} - x^{5} + 10 x^{4} + 161 x^{3} + 628 x^{2} + 1160 x + 841$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |