Normalized defining polynomial
\( x^{6} - 27x^{4} + 2076x^{2} + 10100 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-1883291319104\) \(\medspace = -\,2^{6}\cdot 13^{4}\cdot 101^{3}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(111.13\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 13^{2/3}101^{1/2}\approx 111.12699842931698$ | ||
Ramified primes: | \(2\), \(13\), \(101\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-101}) \) | ||
$\card{ \Gal(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{15}a^{3}-\frac{1}{15}a$, $\frac{1}{540}a^{4}-\frac{1}{30}a^{3}+\frac{19}{540}a^{2}+\frac{1}{30}a+\frac{25}{54}$, $\frac{1}{1080}a^{5}-\frac{17}{1080}a^{3}-\frac{1}{6}a^{2}-\frac{127}{540}a+\frac{1}{6}$
Monogenic: | No | |
Index: | $1080$ | |
Inessential primes: | $2$, $3$, $5$ |
Class group and class number
$C_{42}$, which has order $42$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{376884379964}{9}a^{5}+\frac{2377486775717}{60}a^{4}-\frac{133125214803787}{90}a^{3}+\frac{53276794181203}{60}a^{2}+\frac{73\!\cdots\!67}{90}a+\frac{210441909940271}{2}$, $\frac{2377486775717}{30}a^{4}+\frac{53276794181203}{30}a^{2}+6440108202978$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 13071.1623851 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 13071.1623851 \cdot 42}{2\cdot\sqrt{1883291319104}}\cr\approx \mathstrut & 49.6151555800 \end{aligned}\]
Galois group
A solvable group of order 6 |
The 3 conjugacy class representatives for $S_3$ |
Character table for $S_3$ |
Intermediate fields
\(\Q(\sqrt{-101}) \), 3.1.68276.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Twin sextic algebra: | 3.1.68276.1 $\times$ \(\Q\) $\times$ \(\Q\) $\times$ \(\Q\) |
Degree 3 sibling: | 3.1.68276.1 |
Minimal sibling: | 3.1.68276.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.1.0.1}{1} }^{6}$ | ${\href{/padicField/5.1.0.1}{1} }^{6}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{3}$ | ${\href{/padicField/29.2.0.1}{2} }^{3}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{3}$ | ${\href{/padicField/43.2.0.1}{2} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.2.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.2.2.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.2.2.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
\(13\) | 13.3.2.3 | $x^{3} + 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
13.3.2.3 | $x^{3} + 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
\(101\) | 101.2.1.1 | $x^{2} + 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
101.2.1.1 | $x^{2} + 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
101.2.1.1 | $x^{2} + 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |