Normalized defining polynomial
\( x^{6} - 2 x^{5} + x^{4} + 7 x^{3} + 20 x^{2} + 135 x + 181 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18825075=-\,3^{3}\cdot 5^{2}\cdot 167^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{21} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{21}$, $\frac{1}{441} a^{5} + \frac{2}{147} a^{4} + \frac{1}{9} a^{3} + \frac{5}{21} a^{2} - \frac{169}{441} a + \frac{106}{441}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4}{441} a^{5} + \frac{2}{49} a^{4} - \frac{1}{9} a^{3} + \frac{1}{21} a^{2} - \frac{59}{441} a - \frac{172}{441} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{41}{441} a^{5} - \frac{58}{147} a^{4} + \frac{8}{9} a^{3} - \frac{19}{21} a^{2} + \frac{1303}{441} a + \frac{2855}{441} \), \( \frac{106}{441} a^{5} - \frac{124}{147} a^{4} + \frac{13}{9} a^{3} - \frac{3}{7} a^{2} + \frac{1931}{441} a + \frac{11509}{441} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42.7263368923 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_{6}$ |
| Character table for $D_{6}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.2505.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | Deg 12 |
| Twin sextic algebra: | 3.3.2505.1 $\times$ \(\Q(\sqrt{-835}) \) $\times$ \(\Q\) |
| Degree 6 sibling: | 6.0.5239645875.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $167$ | 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3_5_167.2t1.1c1 | $1$ | $ 3 \cdot 5 \cdot 167 $ | $x^{2} - x - 626$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.5_167.2t1.1c1 | $1$ | $ 5 \cdot 167 $ | $x^{2} - x + 209$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 2.3_5_167.3t2.1c1 | $2$ | $ 3 \cdot 5 \cdot 167 $ | $x^{3} - x^{2} - 10 x - 5$ | $S_3$ (as 3T2) | $1$ | $2$ |
| * | 2.3_5_167.6t3.5c1 | $2$ | $ 3 \cdot 5 \cdot 167 $ | $x^{6} - 2 x^{5} + x^{4} + 7 x^{3} + 20 x^{2} + 135 x + 181$ | $D_{6}$ (as 6T3) | $1$ | $-2$ |