Properties

Label 6.0.1851523947.3
Degree $6$
Signature $[0, 3]$
Discriminant $-\,3^{3}\cdot 7^{4}\cdot 13^{4}$
Root discriminant $35.04$
Ramified primes $3, 7, 13$
Class number $27$
Class group $[3, 3, 3]$
Galois group $S_3$ (as 6T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![300, 30, -29, -3, 4, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 29*x^2 + 30*x + 300)
 
gp: K = bnfinit(x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 29*x^2 + 30*x + 300, 1)
 

Normalized defining polynomial

\( x^{6} - 3 x^{5} + 4 x^{4} - 3 x^{3} - 29 x^{2} + 30 x + 300 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-1851523947=-\,3^{3}\cdot 7^{4}\cdot 13^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $35.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{10} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{10} a$, $\frac{1}{810} a^{5} + \frac{19}{405} a^{4} - \frac{29}{405} a^{3} + \frac{49}{810} a^{2} + \frac{4}{9} a + \frac{7}{27}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{3}\times C_{3}$, which has order $27$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $2$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{1}{405} a^{5} + \frac{1}{162} a^{4} - \frac{23}{405} a^{3} + \frac{32}{405} a^{2} + \frac{1}{90} a + \frac{13}{27} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{405} a^{5} + \frac{38}{405} a^{4} - \frac{58}{405} a^{3} + \frac{49}{405} a^{2} + \frac{26}{9} a + \frac{149}{27} \),  \( \frac{1}{45} a^{5} - \frac{23}{90} a^{4} + \frac{41}{45} a^{3} - \frac{10}{9} a^{2} + \frac{1}{10} a - \frac{1}{3} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 90.5060945159 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3$ (as 6T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 6
The 3 conjugacy class representatives for $S_3$
Character table for $S_3$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.24843.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: 3.1.24843.1 $\times$ \(\Q\) $\times$ \(\Q\) $\times$ \(\Q\)
Degree 3 sibling: 3.1.24843.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.2.0.1}{2} }^{3}$ R ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ R ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
$13$13.3.2.3$x^{3} - 52$$3$$1$$2$$C_3$$[\ ]_{3}$
13.3.2.3$x^{3} - 52$$3$$1$$2$$C_3$$[\ ]_{3}$