Properties

Label 6.0.1836000.1
Degree $6$
Signature $[0, 3]$
Discriminant $-\,2^{5}\cdot 3^{3}\cdot 5^{3}\cdot 17$
Root discriminant $11.07$
Ramified primes $2, 3, 5, 17$
Class number $2$
Class group $[2]$
Galois group $C_3^2:D_4$ (as 6T13)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 1, -5, 2, 4, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^5 + 4*x^4 + 2*x^3 - 5*x^2 + x + 4)
 
gp: K = bnfinit(x^6 - 3*x^5 + 4*x^4 + 2*x^3 - 5*x^2 + x + 4, 1)
 

Normalized defining polynomial

\( x^{6} - 3 x^{5} + 4 x^{4} + 2 x^{3} - 5 x^{2} + x + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-1836000=-\,2^{5}\cdot 3^{3}\cdot 5^{3}\cdot 17\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $11.07$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $2$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{2} a^{5} - a^{4} + a^{3} + 2 a^{2} - \frac{1}{2} a - 1 \),  \( a^{3} - a^{2} + 1 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10.7528876517 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\wr C_2$ (as 6T13):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 9 conjugacy class representatives for $C_3^2:D_4$
Character table for $C_3^2:D_4$

Intermediate fields

\(\Q(\sqrt{-15}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: 6.4.150927360.1
Degree 6 sibling: 6.4.150927360.1
Degree 9 sibling: Deg 9
Degree 12 siblings: Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12
Degree 18 siblings: Deg 18, Deg 18, Deg 18
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ R ${\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.3.2$x^{2} + 6$$2$$1$$3$$C_2$$[3]$
2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
$3$3.6.3.1$x^{6} - 6 x^{4} + 9 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$5$5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$17$$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.3.0.1$x^{3} - x + 3$$1$$3$$0$$C_3$$[\ ]^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.2e3_3_5_17.2t1.2c1$1$ $ 2^{3} \cdot 3 \cdot 5 \cdot 17 $ $x^{2} + 510$ $C_2$ (as 2T1) $1$ $-1$
* 1.3_5.2t1.1c1$1$ $ 3 \cdot 5 $ $x^{2} - x + 4$ $C_2$ (as 2T1) $1$ $-1$
1.2e3_17.2t1.1c1$1$ $ 2^{3} \cdot 17 $ $x^{2} - 34$ $C_2$ (as 2T1) $1$ $1$
2.2e3_3_5_17.4t3.1c1$2$ $ 2^{3} \cdot 3 \cdot 5 \cdot 17 $ $x^{4} + 2 x^{2} - 135$ $D_{4}$ (as 4T3) $1$ $0$
4.2e9_3e2_5e2_17e3.12t34.1c1$4$ $ 2^{9} \cdot 3^{2} \cdot 5^{2} \cdot 17^{3}$ $x^{6} - 3 x^{5} + 4 x^{4} + 2 x^{3} - 5 x^{2} + x + 4$ $C_3^2:D_4$ (as 6T13) $1$ $0$
* 4.2e5_3e2_5e2_17.6t13.1c1$4$ $ 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 17 $ $x^{6} - 3 x^{5} + 4 x^{4} + 2 x^{3} - 5 x^{2} + x + 4$ $C_3^2:D_4$ (as 6T13) $1$ $0$
4.2e8_3_5_17e2.6t13.1c1$4$ $ 2^{8} \cdot 3 \cdot 5 \cdot 17^{2}$ $x^{6} - 3 x^{5} + 4 x^{4} + 2 x^{3} - 5 x^{2} + x + 4$ $C_3^2:D_4$ (as 6T13) $1$ $2$
4.2e8_3e3_5e3_17e2.12t34.1c1$4$ $ 2^{8} \cdot 3^{3} \cdot 5^{3} \cdot 17^{2}$ $x^{6} - 3 x^{5} + 4 x^{4} + 2 x^{3} - 5 x^{2} + x + 4$ $C_3^2:D_4$ (as 6T13) $1$ $-2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.