Normalized defining polynomial
\( x^{6} - 2 x^{5} - 25 x^{4} + 145 x^{3} + 50 x^{2} - 1547 x + 55043 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1811386459=-\,23^{3}\cdot 53^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{13} a^{3} - \frac{1}{13} a^{2} + \frac{1}{13}$, $\frac{1}{13} a^{4} - \frac{1}{13} a^{2} + \frac{1}{13} a + \frac{1}{13}$, $\frac{1}{19252441} a^{5} + \frac{460576}{19252441} a^{4} + \frac{373180}{19252441} a^{3} + \frac{1590679}{19252441} a^{2} - \frac{162943}{1480957} a + \frac{5800082}{19252441}$
Class group and class number
$C_{2}\times C_{12}$, which has order $24$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{119}{19252441} a^{5} + \frac{13135}{19252441} a^{4} - \frac{20290}{19252441} a^{3} - \frac{271695}{19252441} a^{2} + \frac{1170826}{19252441} a - \frac{5840032}{19252441} \), \( \frac{26553}{19252441} a^{5} - \frac{68378}{19252441} a^{4} - \frac{1515704}{19252441} a^{3} + \frac{16696374}{19252441} a^{2} - \frac{91203701}{19252441} a + \frac{394350607}{19252441} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5.01429950424 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_{6}$ |
| Character table for $D_{6}$ |
Intermediate fields
| \(\Q(\sqrt{-1219}) \), 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | Deg 12 |
| Twin sextic algebra: | 3.1.23.1 $\times$ \(\Q(\sqrt{53}) \) $\times$ \(\Q\) |
| Degree 6 sibling: | 6.2.78755933.3 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $53$ | 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.23.2t1.1c1 | $1$ | $ 23 $ | $x^{2} - x + 6$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.53.2t1.1c1 | $1$ | $ 53 $ | $x^{2} - x - 13$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.23_53.2t1.1c1 | $1$ | $ 23 \cdot 53 $ | $x^{2} - x + 305$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 2.23.3t2.1c1 | $2$ | $ 23 $ | $x^{3} - x^{2} + 1$ | $S_3$ (as 3T2) | $1$ | $0$ |
| * | 2.23_53e2.6t3.2c1 | $2$ | $ 23 \cdot 53^{2}$ | $x^{6} - 2 x^{5} - 25 x^{4} + 145 x^{3} + 50 x^{2} - 1547 x + 55043$ | $D_{6}$ (as 6T3) | $1$ | $0$ |