Properties

Label 6.0.177147.2
Degree $6$
Signature $[0, 3]$
Discriminant $-177147$
Root discriminant \(7.49\)
Ramified prime see page
Class number $1$
Class group trivial
Galois group $S_3$ (as 6T2)

Related objects

Downloads

Learn more

Show commands: SageMath / Pari/GP / Magma

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 + 3)
 
gp: K = bnfinit(x^6 + 3, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 0, 0, 0, 0, 0, 1]);
 

\( x^{6} + 3 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $6$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[0, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:   \(-177147\) \(\medspace = -\,3^{11}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  \(7.49\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:   \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$\card{ \Gal(K/\Q) }$:  $6$
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Monogenic:  No
Index:  $4$
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $2$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:   \( -\frac{1}{2} a^{3} + \frac{1}{2} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:   $\frac{1}{2}a^{3}-a^{2}+a-\frac{1}{2}$, $\frac{1}{2}a^{5}+\frac{1}{2}a^{4}+\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 6.37401619527 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{0}\cdot(2\pi)^{3}\cdot 6.37401619527 \cdot 1}{6\sqrt{177147}}\approx 0.626086899233$

Galois group

$S_3$ (as 6T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A solvable group of order 6
The 3 conjugacy class representatives for $S_3$
Character table for $S_3$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.243.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: \(\Q\) $\times$ \(\Q\) $\times$ \(\Q\) $\times$ 3.1.243.1
Degree 3 sibling: 3.1.243.1

Multiplicative Galois module structure

$U_{K^{gal}}/\textrm{Tors}(U_{K^{gal}}) \cong$ $A'$

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.2.0.1}{2} }^{3}$ R ${\href{/padicField/5.2.0.1}{2} }^{3}$ ${\href{/padicField/7.3.0.1}{3} }^{2}$ ${\href{/padicField/11.2.0.1}{2} }^{3}$ ${\href{/padicField/13.3.0.1}{3} }^{2}$ ${\href{/padicField/17.2.0.1}{2} }^{3}$ ${\href{/padicField/19.3.0.1}{3} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{3}$ ${\href{/padicField/29.2.0.1}{2} }^{3}$ ${\href{/padicField/31.3.0.1}{3} }^{2}$ ${\href{/padicField/37.3.0.1}{3} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{3}$ ${\href{/padicField/43.3.0.1}{3} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{3}$ ${\href{/padicField/53.2.0.1}{2} }^{3}$ ${\href{/padicField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.6.11.9$x^{6} + 3$$6$$1$$11$$S_3$$[5/2]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.3.2t1.a.a$1$ $ 3 $ \(\Q(\sqrt{-3}) \) $C_2$ (as 2T1) $1$ $-1$
*2 2.243.3t2.a.a$2$ $ 3^{5}$ 6.0.177147.2 $S_3$ (as 6T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.