Normalized defining polynomial
\( x^{6} - 15x^{4} - 18x^{3} + 63x^{2} + 153x + 93 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-16553403\)
\(\medspace = -\,3^{9}\cdot 29^{2}\)
|
| |
| Root discriminant: | \(15.96\) |
| |
| Galois root discriminant: | $3^{3/2}29^{1/2}\approx 27.982137159266443$ | ||
| Ramified primes: |
\(3\), \(29\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{37}a^{5}+\frac{11}{37}a^{4}-\frac{5}{37}a^{3}+\frac{1}{37}a^{2}+\frac{5}{37}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -\frac{9}{37} a^{5} + \frac{12}{37} a^{4} + \frac{119}{37} a^{3} - \frac{9}{37} a^{2} - 15 a - \frac{526}{37} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{3}{37}a^{5}-\frac{4}{37}a^{4}-\frac{15}{37}a^{3}+\frac{3}{37}a^{2}-\frac{22}{37}$, $\frac{99}{37}a^{5}-\frac{169}{37}a^{4}-\frac{1235}{37}a^{3}+\frac{321}{37}a^{2}+162a+\frac{5342}{37}$
|
| |
| Regulator: | \( 46.2818027475 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 46.2818027475 \cdot 1}{6\cdot\sqrt{16553403}}\cr\approx \mathstrut & 0.470278341144 \end{aligned}\]
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | deg 36 |
| Twin sextic algebra: | 3.1.87.1 $\times$ 3.3.2349.1 |
| Degree 9 sibling: | 9.3.1127634365763.1 |
| Degree 12 sibling: | deg 12 |
| Degree 18 siblings: | deg 18, deg 18, deg 18 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.6.0.1}{6} }$ | R | ${\href{/padicField/5.6.0.1}{6} }$ | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }$ | ${\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }$ | ${\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }$ | R | ${\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{3}$ | ${\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }$ | ${\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.6.9a2.1 | $x^{6} + 3 x^{4} + 3$ | $6$ | $1$ | $9$ | $D_{6}$ | $$[2]_{2}^{2}$$ |
|
\(29\)
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *36 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *36 | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.29.2t1.a.a | $1$ | $ 29 $ | \(\Q(\sqrt{29}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.87.2t1.a.a | $1$ | $ 3 \cdot 29 $ | \(\Q(\sqrt{-87}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.87.6t3.a.a | $2$ | $ 3 \cdot 29 $ | 6.2.219501.1 | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| 2.87.3t2.a.a | $2$ | $ 3 \cdot 29 $ | 3.1.87.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.2349.3t2.a.a | $2$ | $ 3^{4} \cdot 29 $ | 3.3.2349.1 | $S_3$ (as 3T2) | $1$ | $2$ | |
| 2.2349.6t3.b.a | $2$ | $ 3^{4} \cdot 29 $ | 6.0.16553403.1 | $D_{6}$ (as 6T3) | $1$ | $-2$ | |
| *36 | 4.5517801.6t9.a.a | $4$ | $ 3^{8} \cdot 29^{2}$ | 6.0.16553403.2 | $S_3^2$ (as 6T9) | $1$ | $0$ |