Normalized defining polynomial
\( x^{6} - 2 x^{5} + 151 x^{4} - 313 x^{3} + 5788 x^{2} - 12225 x + 80536 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1652658298767=-\,3^{3}\cdot 7^{3}\cdot 563^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 563$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{10} a^{4} + \frac{2}{5} a^{2} + \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{2163620} a^{5} - \frac{6575}{432724} a^{4} + \frac{94099}{1081810} a^{3} - \frac{410863}{2163620} a^{2} - \frac{741749}{2163620} a + \frac{200856}{540905}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{24}$, which has order $192$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{23}{1081810} a^{5} + \frac{571}{540905} a^{4} + \frac{657}{540905} a^{3} + \frac{70079}{1081810} a^{2} - \frac{7581}{108181} a + \frac{693077}{540905} \), \( \frac{1832131}{2163620} a^{5} - \frac{9540269}{2163620} a^{4} + \frac{23089415}{216362} a^{3} - \frac{973481201}{2163620} a^{2} + \frac{4358464557}{2163620} a - \frac{701813747}{540905} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70.2048234294 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_{6}$ |
| Character table for $D_{6}$ |
Intermediate fields
| \(\Q(\sqrt{-11823}) \), 3.1.563.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | Deg 12 |
| Twin sextic algebra: | 3.1.563.1 $\times$ \(\Q(\sqrt{21}) \) $\times$ \(\Q\) |
| Degree 6 sibling: | 6.2.2935449909.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 563 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.563.2t1.1c1 | $1$ | $ 563 $ | $x^{2} - x + 141$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.3_7.2t1.1c1 | $1$ | $ 3 \cdot 7 $ | $x^{2} - x - 5$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.3_7_563.2t1.1c1 | $1$ | $ 3 \cdot 7 \cdot 563 $ | $x^{2} - x + 2956$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 2.563.3t2.1c1 | $2$ | $ 563 $ | $x^{3} - x^{2} + 5 x - 4$ | $S_3$ (as 3T2) | $1$ | $0$ |
| * | 2.3e2_7e2_563.6t3.2c1 | $2$ | $ 3^{2} \cdot 7^{2} \cdot 563 $ | $x^{6} - 2 x^{5} + 151 x^{4} - 313 x^{3} + 5788 x^{2} - 12225 x + 80536$ | $D_{6}$ (as 6T3) | $1$ | $0$ |