Properties

Label 6.0.1617984.1
Degree $6$
Signature $[0, 3]$
Discriminant $-\,2^{6}\cdot 3^{2}\cdot 53^{2}$
Root discriminant $10.84$
Ramified primes $2, 3, 53$
Class number $1$
Class group Trivial
Galois group $S_3^2$ (as 6T9)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 12, 9, -6, -3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^4 - 6*x^3 + 9*x^2 + 12*x + 4)
 
gp: K = bnfinit(x^6 - 3*x^4 - 6*x^3 + 9*x^2 + 12*x + 4, 1)
 

Normalized defining polynomial

\( x^{6} - 3 x^{4} - 6 x^{3} + 9 x^{2} + 12 x + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-1617984=-\,2^{6}\cdot 3^{2}\cdot 53^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $10.84$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{5} - \frac{1}{6} a^{4} + \frac{5}{12} a^{3} - \frac{1}{3} a^{2} + \frac{1}{12} a - \frac{1}{6}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $2$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{1}{4} a^{5} + \frac{1}{6} a^{4} + \frac{3}{4} a^{3} + \frac{4}{3} a^{2} - \frac{13}{4} a - \frac{11}{6} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{4}{3} a^{2} - \frac{5}{6} a + \frac{4}{3} \),  \( \frac{1}{12} a^{5} + \frac{1}{6} a^{4} - \frac{7}{12} a^{3} - \frac{2}{3} a^{2} + \frac{1}{12} a + \frac{1}{6} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 19.731342365 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3^2$ (as 6T9):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 9 conjugacy class representatives for $S_3^2$
Character table for $S_3^2$

Intermediate fields

\(\Q(\sqrt{-1}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Galois closure: data not computed
Twin sextic algebra: 3.3.33708.1 $\times$ 3.1.8427.1
Degree 9 sibling: 9.3.114900048092736.1
Degree 12 sibling: Deg 12
Degree 18 siblings: 18.6.2534788041928904776561145413632.1, 18.0.39606063155139137133767897088.1, Deg 18

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }$ R ${\href{/LocalNumberField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$3$3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$53$$\Q_{53}$$x + 2$$1$$1$$0$Trivial$[\ ]$
53.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
53.3.2.1$x^{3} - 53$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.2e2.2t1.1c1$1$ $ 2^{2}$ $x^{2} + 1$ $C_2$ (as 2T1) $1$ $-1$
1.2e2_3.2t1.1c1$1$ $ 2^{2} \cdot 3 $ $x^{2} - 3$ $C_2$ (as 2T1) $1$ $1$
1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
2.2e4_3_53e2.6t3.1c1$2$ $ 2^{4} \cdot 3 \cdot 53^{2}$ $x^{6} - x^{4} - 35 x^{2} - 108$ $D_{6}$ (as 6T3) $1$ $0$
2.3_53e2.3t2.1c1$2$ $ 3 \cdot 53^{2}$ $x^{3} - 53$ $S_3$ (as 3T2) $1$ $0$
2.2e2_3_53e2.3t2.1c1$2$ $ 2^{2} \cdot 3 \cdot 53^{2}$ $x^{3} - x^{2} - 35 x + 51$ $S_3$ (as 3T2) $1$ $2$
2.2e2_3_53e2.6t3.1c1$2$ $ 2^{2} \cdot 3 \cdot 53^{2}$ $x^{6} - 2 x^{5} + 2 x^{4} + 42 x^{3} + 289 x^{2} + 136 x + 32$ $D_{6}$ (as 6T3) $1$ $-2$
* 4.2e4_3e2_53e2.6t9.1c1$4$ $ 2^{4} \cdot 3^{2} \cdot 53^{2}$ $x^{6} - 3 x^{4} - 6 x^{3} + 9 x^{2} + 12 x + 4$ $S_3^2$ (as 6T9) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.