# Properties

 Label 6.0.143872.1 Degree $6$ Signature $[0, 3]$ Discriminant $-143872$ Root discriminant $$7.24$$ Ramified primes $2,281$ Class number $1$ Class group trivial Galois group $C_3^2:D_4$ (as 6T13)

# Related objects

Show commands: Magma / Oscar / PariGP / SageMath

## Normalizeddefining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 + 3*x^4 - 2*x^3 + 1)

gp: K = bnfinit(y^6 - 2*y^5 + 3*y^4 - 2*y^3 + 1, 1)

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^6 - 2*x^5 + 3*x^4 - 2*x^3 + 1);

oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^6 - 2*x^5 + 3*x^4 - 2*x^3 + 1)

$$x^{6} - 2x^{5} + 3x^{4} - 2x^{3} + 1$$

sage: K.defining_polynomial()

gp: K.pol

magma: DefiningPolynomial(K);

oscar: defining_polynomial(K)

## Invariants

 Degree: $6$ sage: K.degree()  gp: poldegree(K.pol)  magma: Degree(K);  oscar: degree(K) Signature: $[0, 3]$ sage: K.signature()  gp: K.sign  magma: Signature(K);  oscar: signature(K) Discriminant: $$-143872$$ -143872 $$\medspace = -\,2^{9}\cdot 281$$ sage: K.disc()  gp: K.disc  magma: OK := Integers(K); Discriminant(OK);  oscar: OK = ring_of_integers(K); discriminant(OK) Root discriminant: $$7.24$$ sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol))  magma: Abs(Discriminant(OK))^(1/Degree(K));  oscar: (1.0 * dK)^(1/degree(K)) Ramified primes: $$2$$, $$281$$ 2, 281 sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~  magma: PrimeDivisors(Discriminant(OK));  oscar: prime_divisors(discriminant((OK))) Discriminant root field: $$\Q(\sqrt{-562})$$ $\card{ \Aut(K/\Q) }$: $1$ sage: K.automorphisms()  magma: Automorphisms(K);  oscar: automorphisms(K) This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$

sage: K.integral_basis()

gp: K.zk

magma: IntegralBasis(K);

oscar: basis(OK)

 Monogenic: Yes Index: $1$ Inessential primes: None

## Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()

gp: K.clgp

magma: ClassGroup(K);

oscar: class_group(K)

## Unit group

sage: UK = K.unit_group()

magma: UK, fUK := UnitGroup(K);

oscar: UK, fUK = unit_group(OK)

 Rank: $2$ sage: UK.rank()  gp: K.fu  magma: UnitRank(K);  oscar: rank(UK) Torsion generator: $$-1$$ -1  (order $2$) sage: UK.torsion_generator()  gp: K.tu[2]  magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  oscar: torsion_units_generator(OK) Fundamental units: $a^{5}-2a^{4}+3a^{3}-2a^{2}$, $a-1$ a^5 - 2*a^4 + 3*a^3 - 2*a^2, a - 1 sage: UK.fundamental_units()  gp: K.fu  magma: [K|fUK(g): g in Generators(UK)];  oscar: [K(fUK(a)) for a in gens(UK)] Regulator: $$1.3433896592$$ sage: K.regulator()  gp: K.reg  magma: Regulator(K);  oscar: regulator(K)

## Class number formula

\begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 1.3433896592 \cdot 1}{2\cdot\sqrt{143872}}\cr\approx \mathstrut & 0.43926183344 \end{aligned}

# self-contained SageMath code snippet to compute the analytic class number formula

x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 + 3*x^4 - 2*x^3 + 1)

DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()

hK = K.class_number(); wK = K.unit_group().torsion_generator().order();

2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))

# self-contained Pari/GP code snippet to compute the analytic class number formula

K = bnfinit(x^6 - 2*x^5 + 3*x^4 - 2*x^3 + 1, 1);

[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]

/* self-contained Magma code snippet to compute the analytic class number formula */

Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^6 - 2*x^5 + 3*x^4 - 2*x^3 + 1);

OK := Integers(K); DK := Discriminant(OK);

UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);

r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);

hK := #clK; wK := #TorsionSubgroup(UK);

2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));

# self-contained Oscar code snippet to compute the analytic class number formula

Qx, x = PolynomialRing(QQ); K, a = NumberField(x^6 - 2*x^5 + 3*x^4 - 2*x^3 + 1);

OK = ring_of_integers(K); DK = discriminant(OK);

UK, fUK = unit_group(OK); clK, fclK = class_group(OK);

r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);

hK = order(clK); wK = torsion_units_order(K);

2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))

## Galois group

$\SOPlus(4,2)$ (as 6T13):

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

magma: G = GaloisGroup(K);

oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)

 A solvable group of order 72 The 9 conjugacy class representatives for $C_3^2:D_4$ Character table for $C_3^2:D_4$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]

gp: L = nfsubfields(K); L[2..length(b)]

magma: L := Subfields(K); L[2..#L];

oscar: subfields(K)[2:end-1]

## Sibling algebras

 Twin sextic algebra: 6.4.177504328.1 Degree 6 sibling: 6.4.177504328.1 Degree 9 sibling: deg 9 Degree 12 siblings: deg 12, deg 12, deg 12, deg 12, deg 12, deg 12 Degree 18 siblings: deg 18, deg 18, deg 18 Degree 24 siblings: deg 24, deg 24 Degree 36 siblings: deg 36, deg 36, deg 36

## Frobenius cycle types

 $p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$ Cycle type R ${\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.6.0.1}{6} }$ ${\href{/padicField/7.6.0.1}{6} }$ ${\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.2.0.1}{2} }^{3}$ ${\href{/padicField/31.6.0.1}{6} }$ ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.2.0.1}{2} }^{3}$ ${\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:

p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:

p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])

// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))]; # to obtain a list of$[e_i,f_i]$for the factorization of the ideal$p\mathcal{O}_K$for$p=7$in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac] ## Local algebras for ramified primes$p$LabelPolynomial$efc$Galois group Slope content $$2$$ 2.6.9.5$x^{6} + 12 x^{5} + 68 x^{4} + 226 x^{3} + 457 x^{2} + 514 x + 243$$2$$3$$9$$C_6$$[3]^{3} $$281$$ \Q_{281}$$x$$1$$1$$0Trivial[\ ] \Q_{281}$$x$$1$$1$$0Trivial[\ ] \Q_{281}$$x$$1$$1$$0Trivial[\ ] \Q_{281}$$x$$1$$1$$0Trivial[\ ] Deg 2$$2$$1$$1$$C_2$$[\ ]_{2}$## Artin representations Label Dimension Conductor Artin stem field$G$Ind$\chi(c)$* 1.1.1t1.a.a$11$$$\Q$$$C_111$1.2248.2t1.b.a$1 2^{3} \cdot 281 $$$\Q(\sqrt{-562})$$$C_2$(as 2T1)$1-1$* 1.8.2t1.b.a$1 2^{3}$$$\Q(\sqrt{-2})$$$C_2$(as 2T1)$1-1$1.281.2t1.a.a$1 281 $$$\Q(\sqrt{281})$$$C_2$(as 2T1)$11$2.2248.4t3.d.a$2 2^{3} \cdot 281 $4.2.631688.1$D_{4}$(as 4T3)$10$* 4.17984.6t13.b.a$4 2^{6} \cdot 281 $6.0.143872.1$C_3^2:D_4$(as 6T13)$10$4.1420034624.12t34.b.a$4 2^{6} \cdot 281^{3}$6.0.143872.1$C_3^2:D_4$(as 6T13)$10$4.631688.6t13.b.a$4 2^{3} \cdot 281^{2}$6.0.143872.1$C_3^2:D_4$(as 6T13)$12$4.40428032.12t34.b.a$4 2^{9} \cdot 281^{2}$6.0.143872.1$C_3^2:D_4$(as 6T13)$1-2\$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.