Normalized defining polynomial
\( x^{6} - x^{5} + 51 x^{4} - 29 x^{3} + 1195 x^{2} - 703 x + 11545 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14081686879=-\,13^{4}\cdot 79^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1027=13\cdot 79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1027}(1,·)$, $\chi_{1027}(789,·)$, $\chi_{1027}(633,·)$, $\chi_{1027}(315,·)$, $\chi_{1027}(157,·)$, $\chi_{1027}(159,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{133765} a^{5} + \frac{11503}{133765} a^{4} + \frac{36978}{133765} a^{3} + \frac{22183}{133765} a^{2} - \frac{29193}{133765} a + \frac{9388}{26753}$
Class group and class number
$C_{6}\times C_{30}$, which has order $180$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{20}{26753} a^{5} - \frac{79}{133765} a^{4} + \frac{5886}{133765} a^{3} - \frac{2199}{133765} a^{2} + \frac{77036}{133765} a + \frac{2445}{26753} \), \( \frac{20}{26753} a^{5} - \frac{79}{133765} a^{4} + \frac{5886}{133765} a^{3} - \frac{2199}{133765} a^{2} + \frac{77036}{133765} a + \frac{29198}{26753} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5.46019947038 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-79}) \), 3.3.169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-79}) \) $\times$ 3.3.169.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $79$ | 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.79.2t1.1c1 | $1$ | $ 79 $ | $x^{2} - x + 20$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.13.3t1.1c1 | $1$ | $ 13 $ | $x^{3} - x^{2} - 4 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.13_79.6t1.2c1 | $1$ | $ 13 \cdot 79 $ | $x^{6} - x^{5} + 51 x^{4} - 29 x^{3} + 1195 x^{2} - 703 x + 11545$ | $C_6$ (as 6T1) | $0$ | $-1$ |
| * | 1.13.3t1.1c2 | $1$ | $ 13 $ | $x^{3} - x^{2} - 4 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.13_79.6t1.2c2 | $1$ | $ 13 \cdot 79 $ | $x^{6} - x^{5} + 51 x^{4} - 29 x^{3} + 1195 x^{2} - 703 x + 11545$ | $C_6$ (as 6T1) | $0$ | $-1$ |