Normalized defining polynomial
\( x^{6} - 3 x^{5} + 93 x^{4} - 179 x^{3} + 3165 x^{2} - 3273 x + 39203 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13439440863=-\,3^{8}\cdot 127^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1143=3^{2}\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1143}(1,·)$, $\chi_{1143}(1015,·)$, $\chi_{1143}(634,·)$, $\chi_{1143}(763,·)$, $\chi_{1143}(253,·)$, $\chi_{1143}(382,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2349073} a^{5} - \frac{912527}{2349073} a^{4} + \frac{1042128}{2349073} a^{3} - \frac{984953}{2349073} a^{2} + \frac{339569}{2349073} a - \frac{995072}{2349073}$
Class group and class number
$C_{2}\times C_{70}$, which has order $140$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{780}{2349073} a^{5} - \frac{1941}{2349073} a^{4} + \frac{80582}{2349073} a^{3} - \frac{116469}{2349073} a^{2} + \frac{1767644}{2349073} a - \frac{962070}{2349073} \), \( \frac{798}{2349073} a^{5} + \frac{16084}{2349073} a^{4} + \frac{46302}{2349073} a^{3} + \frac{946961}{2349073} a^{2} + \frac{832667}{2349073} a + \frac{18711802}{2349073} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3.39714980258 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-127}) \), \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q(\zeta_{9})^+\) $\times$ \(\Q(\sqrt{-127}) \) $\times$ \(\Q\) |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ |
| $127$ | 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.127.2t1.1c1 | $1$ | $ 127 $ | $x^{2} - x + 32$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.3e2.3t1.1c1 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3e2_127.6t1.1c1 | $1$ | $ 3^{2} \cdot 127 $ | $x^{6} - 3 x^{5} + 93 x^{4} - 179 x^{3} + 3165 x^{2} - 3273 x + 39203$ | $C_6$ (as 6T1) | $0$ | $-1$ |
| * | 1.3e2.3t1.1c2 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3e2_127.6t1.1c2 | $1$ | $ 3^{2} \cdot 127 $ | $x^{6} - 3 x^{5} + 93 x^{4} - 179 x^{3} + 3165 x^{2} - 3273 x + 39203$ | $C_6$ (as 6T1) | $0$ | $-1$ |