Normalized defining polynomial
\( x^{6} - 2 x^{5} - 49 x^{4} + 277 x^{3} + 398 x^{2} - 5675 x + 375851 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12535672267=-\,23^{3}\cdot 101^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{25} a^{3} - \frac{1}{25} a^{2} + \frac{1}{25}$, $\frac{1}{25} a^{4} - \frac{1}{25} a^{2} + \frac{1}{25} a + \frac{1}{25}$, $\frac{1}{253989325} a^{5} + \frac{358257}{253989325} a^{4} + \frac{581761}{50797865} a^{3} - \frac{93906287}{253989325} a^{2} + \frac{54100758}{253989325} a + \frac{76787313}{253989325}$
Class group and class number
$C_{4}\times C_{8}$, which has order $32$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{709}{253989325} a^{5} + \frac{14888}{253989325} a^{4} - \frac{50574}{253989325} a^{3} - \frac{3875614}{253989325} a^{2} + \frac{5049347}{253989325} a + \frac{58010648}{253989325} \), \( \frac{1622526}{50797865} a^{5} + \frac{77756946}{253989325} a^{4} + \frac{276266028}{253989325} a^{3} + \frac{2152851426}{253989325} a^{2} + \frac{4171965276}{253989325} a - \frac{176706585271}{253989325} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9.70439204526 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_{6}$ |
| Character table for $D_{6}$ |
Intermediate fields
| \(\Q(\sqrt{-2323}) \), 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | Deg 12 |
| Twin sextic algebra: | 3.1.23.1 $\times$ \(\Q(\sqrt{101}) \) $\times$ \(\Q\) |
| Degree 6 sibling: | 6.2.545029229.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $101$ | 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.23.2t1.1c1 | $1$ | $ 23 $ | $x^{2} - x + 6$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.101.2t1.1c1 | $1$ | $ 101 $ | $x^{2} - x - 25$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.23_101.2t1.1c1 | $1$ | $ 23 \cdot 101 $ | $x^{2} - x + 581$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 2.23.3t2.1c1 | $2$ | $ 23 $ | $x^{3} - x^{2} + 1$ | $S_3$ (as 3T2) | $1$ | $0$ |
| * | 2.23_101e2.6t3.2c1 | $2$ | $ 23 \cdot 101^{2}$ | $x^{6} - 2 x^{5} - 49 x^{4} + 277 x^{3} + 398 x^{2} - 5675 x + 375851$ | $D_{6}$ (as 6T3) | $1$ | $0$ |